1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
|
/*
ARPACK++ v1.2 2/18/2000
c++ interface to ARPACK code.
MODULE DCompShf.cc.
Example program that illustrates how to solve a complex dense
standard eigenvalue problem in shift and invert mode using the
ARluCompStdEig class.
1) Problem description:
In this example we try to solve A*x = x*lambda in shift and invert
mode, where A is derived from the central difference discretization
of the convection-diffusion operator
(Laplacian u) + rho*(du / dx)
on the unit square [0,1]x[0,1] with zero Dirichlet boundary
conditions.
2) Data structure used to represent matrix A:
Although A is very sparse in this example, it is stored
here columnwise as a dense matrix.
3) Library called by this example:
The LAPACK package is called by ARluCompStdEig to solve
some linear systems involving (A-sigma*I). This is needed to
implement the shift and invert strategy.
4) Included header files:
File Contents
----------- ---------------------------------------------
dcmatrxa.h CompMatrixB, a function that generates
matrix A.
ardnsmat.h The ARdsNonSymMatrix class definition.
ardscomp.h The ARluCompStdEig class definition.
lcompsol.h The Solution function.
arcomp.h The "arcomplex" (complex) type definition.
5) ARPACK Authors:
Richard Lehoucq
Kristyn Maschhoff
Danny Sorensen
Chao Yang
Dept. of Computational & Applied Mathematics
Rice University
Houston, Texas
*/
#include "arcomp.h"
#include "ardnsmat.h"
#include "ardscomp.h"
#include "dcmatrxa.h"
#include "lcompsol.h"
int main()
{
// Defining variables;
int nx;
int n; // Dimension of the problem.
arcomplex<double>* valA; // pointer to an array that stores
// the elements of A.
// Creating a complex matrix.
nx = 10;
CompMatrixA(nx, n, valA);
ARdsNonSymMatrix<arcomplex<double>, double> A(n, valA);
// Defining what we need: the four eigenvectors of F nearest to 0.0.
ARluCompStdEig<double> dprob(4L, A, arcomplex<double>(0.0, 0.0));
// Finding eigenvalues and eigenvectors.
dprob.FindEigenvectors();
// Printing solution.
Solution(A, dprob);
} // main.
|