1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/*
ARPACK++ v1.2 2/20/2000
c++ interface to ARPACK code.
MODULE SMatrixB.h
Class template for the one dimensional discrete Laplacian on
the interval [0,1] with zero Dirichlet boundary conditions.
ARPACK Authors
Richard Lehoucq
Danny Sorensen
Chao Yang
Dept. of Computational & Applied Mathematics
Rice University
Houston, Texas
*/
#ifndef SMATRIXB_H
#define SMATRIXB_H
#include "matprod.h"
#include "blas1c.h"
#include "lapackc.h"
template<class ART>
class SymMatrixB: public MatrixWithProduct<ART> {
private:
ART shift;
ART *Ad, *Adl, *Adu, *Adu2;
int *ipiv;
int decsize;
void FactorDataDeallocate();
public:
void FactorOP();
void MultMv(ART* v, ART* w);
void MultOPv(ART* v, ART* w);
SymMatrixB(int nv);
SymMatrixB(int nv, ART shiftv);
virtual ~SymMatrixB();
}; // SymMatrixB.
template<class ART>
inline void SymMatrixB<ART>::FactorDataDeallocate()
// Eliminates the data structure used on matrix factorization.
{
delete[] Ad;
delete[] Adl;
delete[] Adu;
delete[] Adu2;
delete[] ipiv;
} // FactorDataDeallocate.
template<class ART>
void SymMatrixB<ART>::FactorOP()
/*
Factors (M-shift*I).
*/
{
int i, ierr;
ART h2;
const ART one = 1.0;
const ART two = 2.0;
if (decsize != this->ncols()) {
decsize = this->ncols();
FactorDataDeallocate();
Ad = new ART[this->ncols()];
Adl = new ART[this->ncols()];
Adu = new ART[this->ncols()];
Adu2 = new ART[this->ncols()];
ipiv = new int[this->ncols()];
}
h2 = ART((this->ncols()+1)*(this->ncols()+1));
for (i=0; i<this->ncols(); i++) {
Ad[i] = two*h2 - shift;
Adl[i] = -one*h2;
}
copy(this->ncols(), Adl, 1, Adu, 1);
gttrf(this->ncols(), Adl, Ad, Adu, Adu2, ipiv, ierr);
} // FactorOP.
template<class ART>
void SymMatrixB<ART>::MultMv(ART* v, ART* w)
/*
Matrix-vector multiplication w <- M*v.
*/
{
int j;
ART h2;
const ART two = 2.0;
w[0] = two*v[0] - v[1];
for (j=1; j<this->ncols()-1; j++) {
w[j] = - v[j-1] + two*v[j] - v[j+1];
}
w[this->ncols()-1] = - v[this->ncols()-2] + two*v[this->ncols()-1];
// Scaling the vector w by (1 / h^2).
h2 = ART((this->ncols()+1)*(this->ncols()+1));
scal(this->ncols(), h2, w, 1L);
return;
} // MultMv.
template<class ART>
void SymMatrixB<ART>::MultOPv(ART* v, ART* w)
/*
Matrix-vector multiplication w <- inv(M-shift*I)*v.
*/
{
int ierr;
char *type = "N";
copy(this->ncols(), v, 1, w, 1);
gttrs(type, this->ncols(), 1, Adl, Ad, Adu, Adu2, ipiv, w, this->ncols(), ierr);
} // MultOPv
template<class ART>
inline SymMatrixB<ART>::SymMatrixB(int nval): MatrixWithProduct<ART>(nval)
// Constructor
{
decsize = 0;
Ad = 0;
Adl = 0;
Adu = 0;
Adu2 = 0;
ipiv = 0;
shift = 0.0;
} // Constructor.
template<class ART>
inline SymMatrixB<ART>::
SymMatrixB(int nv, ART shiftv): MatrixWithProduct<ART>(nv)
// Constructor with shift.
{
decsize = 0;
Ad = 0;
Adl = 0;
Adu = 0;
Adu2 = 0;
ipiv = 0;
shift = shiftv;
FactorOP();
} // Constructor with shift.
template<class ART>
inline SymMatrixB<ART>::~SymMatrixB()
// Destructor
{
FactorDataDeallocate();
} // Destructor.
#endif // SMATRIXB_H
|