1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
/*
ARPACK++ v1.2 2/20/2000
c++ interface to ARPACK code.
MODULE SMatrixD.h
Class template for the 1-dimensional mass matrix
on the interval [0,1].
ARPACK Authors
Richard Lehoucq
Danny Sorensen
Chao Yang
Dept. of Computational & Applied Mathematics
Rice University
Houston, Texas
*/
#ifndef SMATRIXD_H
#define SMATRIXD_H
#include "matprod.h"
#include "blas1c.h"
#include "lapackc.h"
template<class ART>
class SymMatrixD: public MatrixWithProduct<ART> {
private:
ART *Ad, *Adl, *Adu, *Adu2;
int *ipiv;
int decsize;
void FactorDataDeallocate();
public:
void FactorM();
void SolveM(ART* v);
void MultMv(ART* v, ART* w);
SymMatrixD(int nv);
virtual ~SymMatrixD();
}; // SymMatrixD.
template<class ART>
inline void SymMatrixD<ART>::FactorDataDeallocate()
// Eliminates the data structure used on matrix factorization.
{
delete[] Ad;
delete[] Adl;
delete[] Adu;
delete[] Adu2;
delete[] ipiv;
} // FactorDataDeallocate.
template<class ART>
void SymMatrixD<ART>::FactorM()
// Factors M.
{
int i, ierr;
ART h, r1, r2;
const ART one = 1.0;
const ART four = 4.0;
const ART six = 6.0;
if (decsize != this->ncols()) {
decsize = this->ncols();
FactorDataDeallocate();
Ad = new ART[this->ncols()];
Adl = new ART[this->ncols()];
Adu = new ART[this->ncols()];
Adu2 = new ART[this->ncols()];
ipiv = new int[this->ncols()];
}
h = one/ART(this->ncols()+1);
r2 = h/six;
r1 = r2*four;
for (i=0; i<this->ncols(); i++) {
Ad[i] = r1;
Adl[i] = r2;
}
copy(this->ncols(), Adl, 1, Adu, 1);
gttrf(this->ncols(), Adl, Ad, Adu, Adu2, ipiv, ierr);
} // FactorM.
template<class ART>
inline void SymMatrixD<ART>::SolveM(ART* v)
// Solves M*w = v. v is overwritten with vector w.
{
int ierr;
char *type = "N";
gttrs(type, this->ncols(), 1, Adl, Ad, Adu, Adu2, ipiv, v, this->ncols(), ierr);
} // SolveM.
template<class ART>
void SymMatrixD<ART>::MultMv(ART* v, ART* w)
// Performs w <- M*v.
{
int j;
ART h;
const ART one = 1.0;
const ART four = 4.0;
const ART six = 6.0;
w[0] = four*v[0] + v[1];
for (j=1; j<this->ncols()-1; j++) {
w[j] = v[j-1] + four*v[j] + v[j+1];
}
w[this->ncols()-1] = v[this->ncols()-2] + four*v[this->ncols()-1];
// Scaling the vector w by h.
h = one / (ART(this->ncols()+1)*six);
scal(this->ncols(), h, w, 1L);
return;
} // MultMv.
template<class ART>
inline SymMatrixD<ART>:: SymMatrixD(int nval): MatrixWithProduct<ART>(nval)
// Constructor.
{
decsize = 0;
Ad = 0;
Adl = 0;
Adu = 0;
Adu2 = 0;
ipiv = 0;
} // Constructor.
template<class ART>
inline SymMatrixD<ART>::~SymMatrixD()
// Destructor.
{
FactorDataDeallocate();
} // Destructor.
#endif // SMATRIXD_H
|