File: lcompsol.h

package info (click to toggle)
arpack%2B%2B 2.3-10
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 4,556 kB
  • sloc: cpp: 16,612; sh: 8,819; ansic: 2,312; makefile: 258
file content (193 lines) | stat: -rw-r--r-- 5,348 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
   ARPACK++ v1.2 2/20/2000
   c++ interface to ARPACK code.

   MODULE LCompSol.h
   Template functions that exemplify how to print information
   about complex standard and generalized eigenvalue problems.

   ARPACK Authors
      Richard Lehoucq
      Danny Sorensen
      Chao Yang
      Dept. of Computational & Applied Mathematics
      Rice University
      Houston, Texas
*/

#ifndef LCOMPSOL_H
#define LCOMPSOL_H

#include <math.h>
#include "arcomp.h"
#include "blas1c.h"
#include "lapackc.h"
#ifdef ARLNSMAT_H
#include "arlscomp.h"
#include "arlgcomp.h"
#elif defined ARUNSMAT_H
#include "aruscomp.h"
#include "arugcomp.h"
#elif defined ARDNSMAT_H
#include "ardscomp.h"
#include "ardgcomp.h"
#else
#include "arbscomp.h"
#include "arbgcomp.h"
#endif

template<class ARMATRIX, class ARFLOAT>
void Solution(ARMATRIX &A, ARluCompStdEig<ARFLOAT> &Prob)
/*
  Prints eigenvalues and eigenvectors of complex eigen-problems
  on standard "cout" stream.
*/

{

  int                i, n, nconv, mode;
  arcomplex<ARFLOAT> *Ax;
  ARFLOAT            *ResNorm;

  n     = Prob.GetN();
  nconv = Prob.ConvergedEigenvalues();
  mode  = Prob.GetMode();

  std::cout << std::endl << std::endl << "Testing ARPACK++ class ARluCompStdEig \n";
  std::cout << "Complex eigenvalue problem: A*x - lambda*x" << std::endl;
  switch (mode) {
  case 1:
    std::cout << "Regular mode" << std::endl << std::endl;
    break;
  case 3:
    std::cout << "Shift and invert mode" << std::endl << std::endl;
  }

  std::cout << "Dimension of the system            : " << n              << std::endl;
  std::cout << "Number of 'requested' eigenvalues  : " << Prob.GetNev()  << std::endl;
  std::cout << "Number of 'converged' eigenvalues  : " << nconv          << std::endl;
  std::cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv()  << std::endl;
  std::cout << "Number of iterations taken         : " << Prob.GetIter() << std::endl;
  std::cout << std::endl;

  if (Prob.EigenvaluesFound()) {

    // Printing eigenvalues.

    std::cout << "Eigenvalues:" << std::endl;
    for (i=0; i<nconv; i++) {
      std::cout << "  lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << std::endl;
    }
    std::cout << std::endl;
  }

  if (Prob.EigenvectorsFound()) {

    // Printing the residual norm || A*x - lambda*x ||
    // for the nconv accurately computed eigenvectors.

    Ax      = new arcomplex<ARFLOAT>[n];
    ResNorm = new ARFLOAT[nconv+1];

    for (i=0; i<nconv; i++) {
      A.MultMv(Prob.RawEigenvector(i),Ax);
      axpy(n, -Prob.Eigenvalue(i), Prob.RawEigenvector(i), 1, Ax, 1);
      ResNorm[i] = nrm2(n, Ax, 1)/
                   lapy2(real(Prob.Eigenvalue(i)),imag(Prob.Eigenvalue(i)));
    }

    for (i=0; i<nconv; i++) {
      std::cout << "||A*x(" << (i+1) << ") - lambda(" << (i+1);
      std::cout << ")*x(" << (i+1) << ")||: " << ResNorm[i] << std::endl;
    }
    std::cout << "\n";

    delete[] Ax;
    delete[] ResNorm;

  }

} // Solution


template<class MATRA, class MATRB, class ARFLOAT>
void Solution(MATRA &A, MATRB &B, ARluCompGenEig<ARFLOAT> &Prob)
/*
  Prints eigenvalues and eigenvectors of complex generalized
  eigen-problems on standard "std::cout" stream.
*/

{

  int                i, n, nconv, mode;
  ARFLOAT            *ResNorm;
  arcomplex<ARFLOAT> *Ax, *Bx;


  n     = Prob.GetN();
  nconv = Prob.ConvergedEigenvalues();
  mode  = Prob.GetMode();

  std::cout << std::endl << std::endl; 
  std::cout << "Testing ARPACK++ class ARluCompGenEig \n" << std::endl;
  std::cout << "Complex generalized eigenvalue problem: A*x - lambda*B*x" << std::endl;
  switch (mode) {
  case 2:
    std::cout << "Regular mode" << std::endl << std::endl;
    break;
  case 3:
    std::cout << "Shift and invert mode" << std::endl << std::endl;
  }

  std::cout << "Dimension of the system            : " << n              << std::endl;
  std::cout << "Number of 'requested' eigenvalues  : " << Prob.GetNev()  << std::endl;
  std::cout << "Number of 'converged' eigenvalues  : " << nconv          << std::endl;
  std::cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv()  << std::endl;
  std::cout << "Number of iterations taken         : " << Prob.GetIter() << std::endl;
  std::cout << std::endl;

  if (Prob.EigenvaluesFound()) {

    // Printing eigenvalues.

    std::cout << "Eigenvalues:" << std::endl;
    for (i=0; i<nconv; i++) {
      std::cout << "  lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << std::endl;
    }
    std::cout << std::endl;
  }

  if (Prob.EigenvectorsFound()) {

    // Printing the residual norm || A*x - lambda*B*x ||
    // for the nconv accurately computed eigenvectors.

    Ax      = new arcomplex<ARFLOAT>[n];
    Bx      = new arcomplex<ARFLOAT>[n];
    ResNorm = new ARFLOAT[nconv+1];

    for (i=0; i<nconv; i++) {
      A.MultMv(Prob.RawEigenvector(i),Ax);
      B.MultMv(Prob.RawEigenvector(i),Bx);
      axpy(n, -Prob.Eigenvalue(i), Bx, 1, Ax, 1);
      ResNorm[i] = nrm2(n, Ax, 1)/
                   lapy2(real(Prob.Eigenvalue(i)),imag(Prob.Eigenvalue(i)));
    }

    for (i=0; i<nconv; i++) {
      std::cout << "||A*x(" << (i+1) << ") - lambda(" << (i+1);
      std::cout << ")*B*x(" << (i+1) << ")||: " << ResNorm[i] << "\n";
    }
    std::cout << std::endl;

    delete[] Ax;
    delete[] Bx;
    delete[] ResNorm;

  }

} // Solution


#endif // LCOMPSOL_H