1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/*
ARPACK++ v1.2 2/20/2000
c++ interface to ARPACK code.
MODULE LNSymSol.h
Template functions that exemplify how to print information
about nonsymmetric standard and generalized eigenvalue problems.
ARPACK Authors
Richard Lehoucq
Danny Sorensen
Chao Yang
Dept. of Computational & Applied Mathematics
Rice University
Houston, Texas
*/
#ifndef LNSYMSOL_H
#define LNSYMSOL_H
#include <math.h>
#include "blas1c.h"
#include "lapackc.h"
#ifdef ARLNSMAT_H
#include "arlsnsym.h"
#include "arlgnsym.h"
#elif defined ARUNSMAT_H
#include "arusnsym.h"
#include "arugnsym.h"
#elif defined ARDNSMAT_H
#include "ardsnsym.h"
#include "ardgnsym.h"
#else
#include "arbsnsym.h"
#include "arbgnsym.h"
#endif
template<class ARMATRIX, class ARFLOAT>
void Solution(ARMATRIX &A, ARluNonSymStdEig<ARFLOAT> &Prob)
/*
Prints eigenvalues and eigenvectors of nonsymmetric eigen-problems
on standard "cout" stream.
*/
{
int i, n, nconv, mode;
ARFLOAT *Ax;
ARFLOAT *ResNorm;
n = Prob.GetN();
nconv = Prob.ConvergedEigenvalues();
mode = Prob.GetMode();
std::cout << std::endl << std::endl << "Testing ARPACK++ class ARluNonSymStdEig \n";
std::cout << "Real nonsymmetric eigenvalue problem: A*x - lambda*x" << std::endl;
switch (mode) {
case 1:
std::cout << "Regular mode" << std::endl << std::endl;
break;
case 3:
std::cout << "Shift and invert mode" << std::endl << std::endl;
}
std::cout << "Dimension of the system : " << n << std::endl;
std::cout << "Number of 'requested' eigenvalues : " << Prob.GetNev() << std::endl;
std::cout << "Number of 'converged' eigenvalues : " << nconv << std::endl;
std::cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv() << std::endl;
std::cout << "Number of iterations taken : " << Prob.GetIter() << std::endl;
std::cout << std::endl;
if (Prob.EigenvaluesFound()) {
// Printing eigenvalues.
std::cout << "Eigenvalues:" << std::endl;
for (i=0; i<nconv; i++) {
std::cout << " lambda[" << (i+1) << "]: " << Prob.EigenvalueReal(i);
if (Prob.EigenvalueImag(i)>=0.0) {
std::cout << " + " << Prob.EigenvalueImag(i) << " I" << std::endl;
}
else {
std::cout << " - " << fabs(Prob.EigenvalueImag(i)) << " I" << std::endl;
}
}
std::cout << std::endl;
}
if (Prob.EigenvectorsFound()) {
// Printing the residual norm || A*x - lambda*x ||
// for the nconv accurately computed eigenvectors.
Ax = new ARFLOAT[n];
ResNorm = new ARFLOAT[nconv+1];
for (i=0; i<nconv; i++) {
if (Prob.EigenvalueImag(i)==0.0) { // Eigenvalue is real.
A.MultMv(Prob.RawEigenvector(i), Ax);
axpy(n, -Prob.EigenvalueReal(i), Prob.RawEigenvector(i), 1, Ax, 1);
ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.EigenvalueReal(i));
}
else { // Eigenvalue is complex.
A.MultMv(Prob.RawEigenvector(i), Ax);
axpy(n, -Prob.EigenvalueReal(i), Prob.RawEigenvector(i), 1, Ax, 1);
axpy(n, Prob.EigenvalueImag(i), Prob.RawEigenvector(i+1), 1, Ax, 1);
ResNorm[i] = nrm2(n, Ax, 1);
A.MultMv(Prob.RawEigenvector(i+1), Ax);
axpy(n, -Prob.EigenvalueImag(i), Prob.RawEigenvector(i), 1, Ax, 1);
axpy(n, -Prob.EigenvalueReal(i), Prob.RawEigenvector(i+1), 1, Ax, 1);
ResNorm[i] = lapy2(ResNorm[i], nrm2(n, Ax, 1))/
lapy2(Prob.EigenvalueReal(i), Prob.EigenvalueImag(i));
ResNorm[i+1] = ResNorm[i];
i++;
}
}
for (i=0; i<nconv; i++) {
std::cout << "||A*x(" << (i+1) << ") - lambda(" << (i+1);
std::cout << ")*x(" << (i+1) << ")||: " << ResNorm[i] << "\n";
}
std::cout << "\n";
delete[] Ax;
delete[] ResNorm;
}
} // Solution
template<class MATRA, class MATRB, class ARFLOAT>
void Solution(MATRA &A, MATRB &B, ARluNonSymGenEig<ARFLOAT> &Prob)
/*
Prints eigenvalues and eigenvectors of nonsymmetric generalized
eigen-problems on standard "std::cout" stream.
*/
{
int i, n, nconv, mode;
ARFLOAT *Ax;
ARFLOAT *Bx, *Bx1;
ARFLOAT *ResNorm;
n = Prob.GetN();
nconv = Prob.ConvergedEigenvalues();
mode = Prob.GetMode();
std::cout << std::endl << std::endl << "Testing ARPACK++ class ARluNonSymGenEig \n";
std::cout << "Real nonsymmetric generalized eigenvalue problem: A*x - lambda*B*x";
std::cout << std::endl;
switch (mode) {
case 2:
std::cout << "Regular mode" << std::endl;
break;
case 3:
std::cout << "Shift and invert mode (using the real part of OP)" << std::endl;
break;
case 4:
std::cout << "Shift and invert mode (using the imaginary part of OP)" << std::endl;
}
std::cout << std::endl;
std::cout << "Dimension of the system : " << n << std::endl;
std::cout << "Number of 'requested' eigenvalues : " << Prob.GetNev() << std::endl;
std::cout << "Number of 'converged' eigenvalues : " << nconv << std::endl;
std::cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv() << std::endl;
std::cout << "Number of iterations taken : " << Prob.GetIter() << std::endl;
std::cout << std::endl;
if (Prob.EigenvaluesFound()) {
// Printing eigenvalues.
std::cout << "Eigenvalues:" << std::endl;
for (i=0; i<nconv; i++) {
std::cout << " lambda[" << (i+1) << "]: " << Prob.EigenvalueReal(i);
if (Prob.EigenvalueImag(i)>=0.0) {
std::cout << " + " << Prob.EigenvalueImag(i) << " I" << std::endl;
}
else {
std::cout << " - " << fabs(Prob.EigenvalueImag(i)) << " I" << std::endl;
}
}
std::cout << std::endl;
}
if (Prob.EigenvectorsFound()) {
// Printing the residual norm || A*x - lambda*B*x ||
// for the nconv accurately computed eigenvectors.
Ax = new ARFLOAT[n];
Bx = new ARFLOAT[n];
Bx1 = new ARFLOAT[n];
ResNorm = new ARFLOAT[nconv+1];
for (i=0; i<nconv; i++) {
if (Prob.EigenvalueImag(i)==0.0) { // Eigenvalue is real.
A.MultMv(Prob.RawEigenvector(i), Ax);
B.MultMv(Prob.RawEigenvector(i), Bx);
axpy(n, -Prob.EigenvalueReal(i), Bx, 1, Ax, 1);
ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.EigenvalueReal(i));
}
else { // Eigenvalue is complex.
A.MultMv(Prob.RawEigenvector(i), Ax);
B.MultMv(Prob.RawEigenvector(i), Bx);
B.MultMv(Prob.RawEigenvector(i+1), Bx1);
axpy(n, -Prob.EigenvalueReal(i), Bx, 1, Ax, 1);
axpy(n, Prob.EigenvalueImag(i), Bx1, 1, Ax, 1);
ResNorm[i] = nrm2(n, Ax, 1);
A.MultMv(Prob.RawEigenvector(i+1), Ax);
axpy(n, -Prob.EigenvalueImag(i), Bx, 1, Ax, 1);
axpy(n, -Prob.EigenvalueReal(i), Bx1, 1, Ax, 1);
ResNorm[i] = lapy2(ResNorm[i], nrm2(n, Ax, 1))/
lapy2(Prob.EigenvalueReal(i), Prob.EigenvalueImag(i));
ResNorm[i+1] = ResNorm[i];
i++;
}
}
for (i=0; i<nconv; i++) {
std::cout << "||A*x(" << i << ") - lambda(" << i;
std::cout << ")*B*x(" << i << ")||: " << ResNorm[i] << "\n";
}
std::cout << "\n";
delete[] Ax;
delete[] Bx;
delete[] Bx1;
delete[] ResNorm;
}
} // Solution
#endif // LNSYMSOL_H
|