File: lsmatrxa.h

package info (click to toggle)
arpack%2B%2B 2.3-10
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 4,556 kB
  • sloc: cpp: 16,612; sh: 8,819; ansic: 2,312; makefile: 258
file content (97 lines) | stat: -rw-r--r-- 1,920 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/*
   ARPACK++ v1.2 2/20/2000
   c++ interface to ARPACK code.

   MODULE LSMatrxA.h
   Function template for the matrix

                          | T -I          |
                          |-I  T -I       |
                      A = |   -I  T       |
                          |        ...  -I|
                          |           -I T|

   derived from the standard central difference discretization of the
   2-dimensional Laplacian on the unit square with zero Dirichlet 
   boundary conditions.

   ARPACK Authors
      Richard Lehoucq
      Danny Sorensen
      Chao Yang
      Dept. of Computational & Applied Mathematics
      Rice University
      Houston, Texas
*/

#ifndef LSMATRXA_H
#define LSMATRXA_H

#include <math.h>

template<class ARFLOAT, class ARINT>
void SymmetricMatrixA(ARINT nx, ARINT& n, ARINT& nnz, ARFLOAT* &A, 
                      ARINT* &irow, ARINT* &pcol, char uplo = 'L')

{

  // Defining internal variables.

  ARINT    i, j;
  ARFLOAT  h2, df, dd;

  // Defining constants.

  h2  = 1.0/(ARFLOAT(nx+1)*ARFLOAT(nx+1));
  dd  = 4.0/h2;
  df  = -1.0/h2;

  // Defining the number of columns and nonzero elements of matrix.

  n   = nx*nx;
  nnz = 3*n-2*nx;

  // Creating output vectors.

  A    = new ARFLOAT[nnz];
  irow = new ARINT[nnz];
  pcol = new ARINT[n+1];

  // Defining  matrix A.

  pcol[0] = 0;
  i       = 0;

  if (uplo == 'U') {

    for (j = 0; j < n; j++) {
      if (j >= nx) {
        A[i] = df;   irow[i++] = j-nx;
      }
      if ((j%nx) != 0) {
        A[i] = df;   irow[i++] = j-1;
      }
      A[i] = dd;     irow[i++] = j;
      pcol[j+1] = i;
    }

  }
  else {

    for (j = 0; j < n; j++) {
      A[i] = dd;     irow[i++] = j;
      if (((j+1)%nx) != 0) {
        A[i] = df;   irow[i++] = j+1;
      }
      if (j < n-nx) {
        A[i] = df;   irow[i++] = j+nx;
      }
      pcol[j+1] = i;
    }

  }

} // SymmetricMatrixA.

#endif // LSMATRXA_H