File: lsymsol.h

package info (click to toggle)
arpack%2B%2B 2.3-10
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 4,556 kB
  • sloc: cpp: 16,612; sh: 8,819; ansic: 2,312; makefile: 258
file content (197 lines) | stat: -rw-r--r-- 5,222 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/*
   ARPACK++ v1.2 2/20/2000
   c++ interface to ARPACK code.

   MODULE LSymSol.h
   Template functions that exemplify how to print information
   about symmetric standard and generalized eigenvalue problems.

   ARPACK Authors
      Richard Lehoucq
      Danny Sorensen
      Chao Yang
      Dept. of Computational & Applied Mathematics
      Rice University
      Houston, Texas
*/

#ifndef LSYMSOL_H
#define LSYMSOL_H

#include <math.h>
#include "blas1c.h"
#include "lapackc.h"
#ifdef ARLSMAT_H
#include "arlssym.h"
#include "arlgsym.h"
#elif defined ARUSMAT_H
#include "arussym.h"
#include "arugsym.h"
#elif defined ARDSMAT_H
#include "ardssym.h"
#include "ardgsym.h"
#else
#include "arbssym.h"
#include "arbgsym.h"
#endif


template<class ARMATRIX, class ARFLOAT>
void Solution(ARMATRIX &A, ARluSymStdEig<ARFLOAT> &Prob)
/*
  Prints eigenvalues and eigenvectors of symmetric eigen-problems
  on standard "std::cout" stream.
*/

{

  int     i, n, nconv, mode;
  ARFLOAT *Ax;
  ARFLOAT *ResNorm;

  n     = Prob.GetN();
  nconv = Prob.ConvergedEigenvalues();
  mode  = Prob.GetMode();

  std::cout << std::endl << std::endl << "Testing ARPACK++ class ARluSymStdEig \n";
  std::cout << "Real symmetric eigenvalue problem: A*x - lambda*x" << std::endl;
  switch (mode) {
  case 1:
    std::cout << "Regular mode" << std::endl;
    break;
  case 3:
    std::cout << "Shift and invert mode" << std::endl;
  }
  std::cout << std::endl;

  std::cout << "Dimension of the system            : " << n              << std::endl;
  std::cout << "Number of 'requested' eigenvalues  : " << Prob.GetNev()  << std::endl;
  std::cout << "Number of 'converged' eigenvalues  : " << nconv          << std::endl;
  std::cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv()  << std::endl;
  std::cout << "Number of iterations taken         : " << Prob.GetIter() << std::endl;
  std::cout << std::endl;

  if (Prob.EigenvaluesFound()) {

    // Printing eigenvalues.

    std::cout << "Eigenvalues:" << std::endl;
    for (i=0; i<nconv; i++) {
      std::cout << "  lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << std::endl;
    }
    std::cout << std::endl;
  }

  if (Prob.EigenvectorsFound()) {

    // Printing the residual norm || A*x - lambda*x ||
    // for the nconv accurately computed eigenvectors.

    Ax      = new ARFLOAT[n];
    ResNorm = new ARFLOAT[nconv+1];

    for (i=0; i<nconv; i++) {
      A.MultMv(Prob.RawEigenvector(i), Ax);
      axpy(n, -Prob.Eigenvalue(i), Prob.RawEigenvector(i), 1, Ax, 1);
      ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.Eigenvalue(i));
    }

    for (i=0; i<nconv; i++) {
      std::cout << "||A*x(" << (i+1) << ") - lambda(" << (i+1);
      std::cout << ")*x(" << (i+1) << ")||: " << ResNorm[i] << "\n";
    }
    std::cout << "\n";

    delete[] Ax;
    delete[] ResNorm;

  }

} // Solution


template<class MATRA, class MATRB, class ARFLOAT>
void Solution(MATRA &A, MATRB &B, ARluSymGenEig<ARFLOAT> &Prob)
/*
  Prints eigenvalues and eigenvectors of symmetric generalized
  eigen-problems on standard "std::cout" stream.
*/

{

  int     i, n, nconv, mode;
  ARFLOAT *Ax, *Bx, *ResNorm;

  n     = Prob.GetN();
  nconv = Prob.ConvergedEigenvalues();
  mode  = Prob.GetMode();

  std::cout << std::endl << std::endl << "Testing ARPACK++ class ARluSymGenEig \n";
  std::cout << "Real symmetric generalized eigenvalue problem: A*x - lambda*B*x";
  std::cout << std::endl;
  switch (mode) {
  case 2:
    std::cout << "Regular mode" << std::endl;
    break;
  case 3:
    std::cout << "Shift and invert mode" << std::endl;
    break;
  case 4:
    std::cout << "Buckling mode" << std::endl;
    break;
  case 5:
    std::cout << "Cayley mode" << std::endl;
  }
  std::cout << std::endl;

  std::cout << "Dimension of the system            : " << n              << std::endl;
  std::cout << "Number of 'requested' eigenvalues  : " << Prob.GetNev()  << std::endl;
  std::cout << "Number of 'converged' eigenvalues  : " << nconv          << std::endl;
  std::cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv()  << std::endl;
  std::cout << "Number of iterations taken         : " << Prob.GetIter() << std::endl;
  std::cout << std::endl;

  if (Prob.EigenvaluesFound()) {

    // Printing eigenvalues.

    std::cout << "Eigenvalues:" << std::endl;
    for (i=0; i<nconv; i++) {
      std::cout << "  lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << std::endl;
    }
    std::cout << std::endl;
  }

  if (Prob.EigenvectorsFound()) {

    // Printing the residual norm || A*x - lambda*B*x ||
    // for the nconv accurately computed eigenvectors.

    Ax      = new ARFLOAT[n];
    Bx      = new ARFLOAT[n];
    ResNorm = new ARFLOAT[nconv+1];

    for (i=0; i<nconv; i++) {
      A.MultMv(Prob.RawEigenvector(i), Ax);
      B.MultMv(Prob.RawEigenvector(i), Bx);
      axpy(n, -Prob.Eigenvalue(i), Bx, 1, Ax, 1);
      ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.Eigenvalue(i));
    }

    for (i=0; i<nconv; i++) {
      std::cout << "||A*x(" << i << ") - lambda(" << i;
      std::cout << ")*B*x(" << i << ")||: " << ResNorm[i] << "\n";
    }
    std::cout << "\n";

    delete[] Ax;
    delete[] Bx;
    delete[] ResNorm;

  }

} // Solution


#endif // LSYMSOL_H