1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
/*
ARPACK++ v1.2 2/20/2000
c++ interface to ARPACK code.
MODULE LSymSol.h
Template functions that exemplify how to print information
about symmetric standard and generalized eigenvalue problems.
ARPACK Authors
Richard Lehoucq
Danny Sorensen
Chao Yang
Dept. of Computational & Applied Mathematics
Rice University
Houston, Texas
*/
#ifndef LSYMSOL_H
#define LSYMSOL_H
#include <math.h>
#include "blas1c.h"
#include "lapackc.h"
#ifdef ARLSMAT_H
#include "arlssym.h"
#include "arlgsym.h"
#elif defined ARUSMAT_H
#include "arussym.h"
#include "arugsym.h"
#elif defined ARDSMAT_H
#include "ardssym.h"
#include "ardgsym.h"
#else
#include "arbssym.h"
#include "arbgsym.h"
#endif
template<class ARMATRIX, class ARFLOAT>
void Solution(ARMATRIX &A, ARluSymStdEig<ARFLOAT> &Prob)
/*
Prints eigenvalues and eigenvectors of symmetric eigen-problems
on standard "std::cout" stream.
*/
{
int i, n, nconv, mode;
ARFLOAT *Ax;
ARFLOAT *ResNorm;
n = Prob.GetN();
nconv = Prob.ConvergedEigenvalues();
mode = Prob.GetMode();
std::cout << std::endl << std::endl << "Testing ARPACK++ class ARluSymStdEig \n";
std::cout << "Real symmetric eigenvalue problem: A*x - lambda*x" << std::endl;
switch (mode) {
case 1:
std::cout << "Regular mode" << std::endl;
break;
case 3:
std::cout << "Shift and invert mode" << std::endl;
}
std::cout << std::endl;
std::cout << "Dimension of the system : " << n << std::endl;
std::cout << "Number of 'requested' eigenvalues : " << Prob.GetNev() << std::endl;
std::cout << "Number of 'converged' eigenvalues : " << nconv << std::endl;
std::cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv() << std::endl;
std::cout << "Number of iterations taken : " << Prob.GetIter() << std::endl;
std::cout << std::endl;
if (Prob.EigenvaluesFound()) {
// Printing eigenvalues.
std::cout << "Eigenvalues:" << std::endl;
for (i=0; i<nconv; i++) {
std::cout << " lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << std::endl;
}
std::cout << std::endl;
}
if (Prob.EigenvectorsFound()) {
// Printing the residual norm || A*x - lambda*x ||
// for the nconv accurately computed eigenvectors.
Ax = new ARFLOAT[n];
ResNorm = new ARFLOAT[nconv+1];
for (i=0; i<nconv; i++) {
A.MultMv(Prob.RawEigenvector(i), Ax);
axpy(n, -Prob.Eigenvalue(i), Prob.RawEigenvector(i), 1, Ax, 1);
ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.Eigenvalue(i));
}
for (i=0; i<nconv; i++) {
std::cout << "||A*x(" << (i+1) << ") - lambda(" << (i+1);
std::cout << ")*x(" << (i+1) << ")||: " << ResNorm[i] << "\n";
}
std::cout << "\n";
delete[] Ax;
delete[] ResNorm;
}
} // Solution
template<class MATRA, class MATRB, class ARFLOAT>
void Solution(MATRA &A, MATRB &B, ARluSymGenEig<ARFLOAT> &Prob)
/*
Prints eigenvalues and eigenvectors of symmetric generalized
eigen-problems on standard "std::cout" stream.
*/
{
int i, n, nconv, mode;
ARFLOAT *Ax, *Bx, *ResNorm;
n = Prob.GetN();
nconv = Prob.ConvergedEigenvalues();
mode = Prob.GetMode();
std::cout << std::endl << std::endl << "Testing ARPACK++ class ARluSymGenEig \n";
std::cout << "Real symmetric generalized eigenvalue problem: A*x - lambda*B*x";
std::cout << std::endl;
switch (mode) {
case 2:
std::cout << "Regular mode" << std::endl;
break;
case 3:
std::cout << "Shift and invert mode" << std::endl;
break;
case 4:
std::cout << "Buckling mode" << std::endl;
break;
case 5:
std::cout << "Cayley mode" << std::endl;
}
std::cout << std::endl;
std::cout << "Dimension of the system : " << n << std::endl;
std::cout << "Number of 'requested' eigenvalues : " << Prob.GetNev() << std::endl;
std::cout << "Number of 'converged' eigenvalues : " << nconv << std::endl;
std::cout << "Number of Arnoldi vectors generated: " << Prob.GetNcv() << std::endl;
std::cout << "Number of iterations taken : " << Prob.GetIter() << std::endl;
std::cout << std::endl;
if (Prob.EigenvaluesFound()) {
// Printing eigenvalues.
std::cout << "Eigenvalues:" << std::endl;
for (i=0; i<nconv; i++) {
std::cout << " lambda[" << (i+1) << "]: " << Prob.Eigenvalue(i) << std::endl;
}
std::cout << std::endl;
}
if (Prob.EigenvectorsFound()) {
// Printing the residual norm || A*x - lambda*B*x ||
// for the nconv accurately computed eigenvectors.
Ax = new ARFLOAT[n];
Bx = new ARFLOAT[n];
ResNorm = new ARFLOAT[nconv+1];
for (i=0; i<nconv; i++) {
A.MultMv(Prob.RawEigenvector(i), Ax);
B.MultMv(Prob.RawEigenvector(i), Bx);
axpy(n, -Prob.Eigenvalue(i), Bx, 1, Ax, 1);
ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.Eigenvalue(i));
}
for (i=0; i<nconv; i++) {
std::cout << "||A*x(" << i << ") - lambda(" << i;
std::cout << ")*B*x(" << i << ")||: " << ResNorm[i] << "\n";
}
std::cout << "\n";
delete[] Ax;
delete[] Bx;
delete[] ResNorm;
}
} // Solution
#endif // LSYMSOL_H
|