1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
/*
ARPACK++ v1.2 2/18/2000
c++ interface to ARPACK code.
MODULE RCompGSh.cc.
Example program that illustrates how to solve a complex
generalized eigenvalue problem in shift and invert mode
using the ARrcCompGenEig class.
1) Problem description:
In this example we try to solve A*x = B*x*lambda in shift and
invert mode, where A and B are derived from a finite element
discretization of a 1-dimensional convection-diffusion operator
(d^2u/dx^2) + rho*(du/dx)
on the interval [0,1] with zero boundary conditions using
piecewise linear elements.
2) Data structure used to represent matrix A:
ARrcCompGenEig is a class thar requires the user to provide a
way to perform the matrix-vector products w = OP*Bv =
inv(A-sigma*B)*B*v and w = B*v, where sigma is the adopted shift.
In this example a class called ComplexGenProblemB was created
with this purpose. ComplexGenProblemB contains a member function,
MultOPv(v,w), that takes a vector v and returns the product OPv
in w. It also contains an object, B, that stores matrix B data.
The product Bv is performed by MultMv, a member function of B.
3) The reverse communication interface:
This example uses the reverse communication interface, which
means that the desired eigenvalues cannot be obtained directly
from an ARPACK++ class.
Here, the overall process of finding eigenvalues by using the
Arnoldi method is splitted into two parts. In the first, a
sequence of calls to a function called TakeStep is combined
with matrix-vector products in order to find an Arnoldi basis.
In the second part, an ARPACK++ function like FindEigenvectors
(or EigenValVectors) is used to extract eigenvalues and
eigenvectors.
4) Included header files:
File Contents
----------- -------------------------------------------
cgenprbb.h The ComplexGenProblemB class definition.
arrgcomp.h The ARrcCompGenEig class definition.
rcompgsl.h The Solution function.
arcomp.h The "arcomplex" (complex) type definition.
5) ARPACK Authors:
Richard Lehoucq
Kristyn Maschhoff
Danny Sorensen
Chao Yang
Dept. of Computational & Applied Mathematics
Rice University
Houston, Texas
*/
#include "arcomp.h"
#include "cgenprbb.h"
#include "rcompgsl.h"
#include "arrgcomp.h"
template<class T>
void Test(T type)
{
// Defining a temporary vector.
arcomplex<T> temp[101];
// Defining a complex pencil with n = 100, rho = 10, sigma = 1.
ComplexGenProblemB<T> P(100, arcomplex<T>(10.0,0.0), arcomplex<T>(1.0,0.0));
// Creating a complex eigenvalue problem and defining what we need:
// the four eigenvectors nearest to 1.0.
ARrcCompGenEig<T> prob(P.A.ncols(), 4L, arcomplex<T>(1.0,0.0));
// Finding an Arnoldi basis.
while (!prob.ArnoldiBasisFound()) {
// Calling ARPACK FORTRAN code. Almost all work needed to
// find an Arnoldi basis is performed by TakeStep.
prob.TakeStep();
switch (prob.GetIdo()) {
case -1:
// Performing w <- OP*B*v for the first time.
// This product must be performed only if GetIdo is equal to
// -1. GetVector supplies a pointer to the input vector, v,
// and PutVector a pointer to the output vector, w.
P.B.MultMv(prob.GetVector(), temp);
P.MultOPv(temp, prob.PutVector());
break;
case 1:
// Performing w <- OP*B*v when Bv is available.
// This product must be performed whenever GetIdo is equal to
// 1. GetProd supplies a pointer to the previously calculated
// product Bv and PutVector a pointer to the output vector w.
P.MultOPv(prob.GetProd(), prob.PutVector());
break;
case 2:
// Performing w <- B*v.
P.B.MultMv(prob.GetVector(), prob.PutVector());
}
}
// Finding eigenvalues and eigenvectors.
prob.FindEigenvectors();
// Printing solution.
Solution(prob);
} // Test.
int main()
{
// Solving a single precision problem with n = 100.
#ifndef __SUNPRO_CC
Test((float)0.0);
#endif
// Solving a double precision problem with n = 100.
Test((double)0.0);
} // main
|