File: rcompreg.cc

package info (click to toggle)
arpack%2B%2B 2.3-10
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 4,556 kB
  • sloc: cpp: 16,612; sh: 8,819; ansic: 2,312; makefile: 258
file content (129 lines) | stat: -rw-r--r-- 3,456 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/*
   ARPACK++ v1.2 2/18/2000
   c++ interface to ARPACK code.

   MODULE RCompReg.cc.
   Example program that illustrates how to solve a complex
   standard eigenvalue problem in regular mode using the 
   ARrcCompStdEig class.

   1) Problem description:

      In this example we try to solve A*x = x*lambda in regular mode,
      where A is obtained from the standard central difference
      discretization of the convection-diffusion operator 
                     (Laplacian u) + rho*(du / dx)
      on the unit squre [0,1]x[0,1] with zero Dirichlet boundary
      conditions.

   2) Data structure used to represent matrix A:

      ARrcCompStdEig is a class thar requires the user to provide
      a way to perform the matrix-vector product w = Av. In this
      example a class called CompMatrixA was created with this
      purpose. CompMatrixA contains a member function, MultMv(v,w),
      that takes a vector v and returns the product Av in w.

   3) The reverse communication interface:

      This example uses the reverse communication interface, which
      means that the desired eigenvalues cannot be obtained directly
      from an ARPACK++ class.
      Here, the overall process of finding eigenvalues by using the
      Arnoldi method is splitted into two parts. In the first, a
      sequence of calls to a function called TakeStep is combined
      with matrix-vector products in order to find an Arnoldi basis.
      In the second part, an ARPACK++ function like FindEigenvectors
      (or EigenValVectors) is used to extract eigenvalues and
      eigenvectors.

   4) Included header files:

      File             Contents
      -----------      -------------------------------------------
      cmatrixa.h       The CompMatrixA class definition.
      arrscomp.h       The ARrcCompStdEig class definition.
      rcompsol.h       The Solution function.
      arcomp.h         The "arcomplex" (complex) type definition.

   5) ARPACK Authors:

      Richard Lehoucq
      Kristyn Maschhoff
      Danny Sorensen
      Chao Yang
      Dept. of Computational & Applied Mathematics
      Rice University
      Houston, Texas
*/

#include "arcomp.h"
#include "arrscomp.h"
#include "cmatrixa.h"
#include "rcompsol.h"


template<class T>
void Test(T type)
{

  // Defining a complex matrix.

  CompMatrixA<T> A(10); // n = 10*10.

  // Creating a complex eigenvalue problem and defining what we need:
  // the four eigenvectors of A with largest magnitude.

  ARrcCompStdEig<T> prob(A.ncols(), 4L);

  // Finding an Arnoldi basis.

  while (!prob.ArnoldiBasisFound()) {

    // Calling ARPACK FORTRAN code. Almost all work needed to
    // find an Arnoldi basis is performed by TakeStep.

    prob.TakeStep();

    if ((prob.GetIdo() == 1)||(prob.GetIdo() == -1)) {

      // Performing matrix-vector multiplication.
      // In regular mode, w = Av must be performed whenever
      // GetIdo is equal to 1 or -1. GetVector supplies a pointer
      // to the input vector, v, and PutVector a pointer to the
      // output vector, w.

      A.MultMv(prob.GetVector(), prob.PutVector());

    }

  }

  // Finding eigenvalues and eigenvectors.

  prob.FindEigenvectors();

  // Printing solution.

  Solution(prob);

} // Test.


int main()
{

  // Solving a single precision problem with n = 100.

#ifndef __SUNPRO_CC

  Test((float)0.0);

#endif

  // Solving a double precision problem with n = 100.

  Test((double)0.0);

} // main