1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
/*
ARPACK++ v1.2 2/18/2000
c++ interface to ARPACK code.
MODULE RSymGBkl.cc.
Example program that illustrates how to solve a real symmetric
generalized eigenvalue problem in buckling mode using the
ARrcSymGenEig class.
1) Problem description:
In this example we try to solve A*x = B*x*lambda in buckling
mode, where A and B are obtained from the finite element
discretrization of the 1-dimensional discrete Laplacian
d^2u / dx^2
on the interval [0,1] with zero Dirichlet boundary conditions
using piecewise linear elements.
2) Data structure used to represent matrices A and B:
ARrcSymGenEig is a class that requires the user to provide a
way to perform the matrix-vector products w = OP*Av =
inv(A-sigma*B)*A*v and w = A*v, where sigma is the adopted shift.
In this example a class called SymGenProblemB was created with
this purpose. SymGenProblemB contains a member function,
MultOPv(v,w), that takes a vector v and returns the product OPv
in w. It also contains an object, A, that stores matrix A data.
The product Av is performed by MultMv, a member function of A.
3) The reverse communication interface:
This example uses the reverse communication interface, which
means that the desired eigenvalues cannot be obtained directly
from an ARPACK++ class.
Here, the overall process of finding eigenvalues by using the
Arnoldi method is splitted into two parts. In the first, a
sequence of calls to a function called TakeStep is combined
with matrix-vector products in order to find an Arnoldi basis.
In the second part, an ARPACK++ function like FindEigenvectors
(or EigenValVectors) is used to extract eigenvalues and
eigenvectors.
4) Included header files:
File Contents
----------- -------------------------------------------
sgenprbb.h The SymGenProblemB class definition.
arrgsym.h The ARrcSymGenEig class definition.
rsymgsol.h The Solution function.
5) ARPACK Authors:
Richard Lehoucq
Kristyn Maschhoff
Danny Sorensen
Chao Yang
Dept. of Computational & Applied Mathematics
Rice University
Houston, Texas
*/
#include "sgenprbb.h"
#include "rsymgsol.h"
#include "arrgsym.h"
template<class T>
void Test(T type)
{
// Defining a temporary vector.
T temp[101];
// Creating a pencil.
SymGenProblemB<T> P(100, 1.0);
// Creating a symmetric eigenvalue problem. 'B' indicates that
// we will use the buckling mode. P.A.ncols() furnishes the
// dimension of the problem. 4 is the number of eigenvalues
// sought and 1.0 is the shift.
ARrcSymGenEig<T> prob('B', P.A.ncols(), 4L, 1.0);
// Finding an Arnoldi basis.
while (!prob.ArnoldiBasisFound()) {
// Calling ARPACK FORTRAN code. Almost all work needed to
// find an Arnoldi basis is performed by TakeStep.
prob.TakeStep();
switch (prob.GetIdo()) {
case -1:
// Performing w <- OP*A*v for the first time.
// This product must be performed only if GetIdo is equal to
// -1. GetVector supplies a pointer to the input vector, v,
// and PutVector a pointer to the output vector, w.
P.A.MultMv(prob.GetVector(), temp);
P.MultOPv(temp, prob.PutVector());
break;
case 1:
// Performing w <- OP*A*v.
// This product must be performed whenever GetIdo is equal to
// 1. GetProd supplies a pointer to the previously calculated
// product Av and PutVector a pointer to the output vector w.
P.MultOPv(prob.GetProd(), prob.PutVector());
break;
case 2:
// Performing w <- A*v.
P.A.MultMv(prob.GetVector(), prob.PutVector());
}
}
// Finding eigenvalues and eigenvectors.
prob.FindEigenvectors();
// Printing solution.
Solution(prob);
} // Test.
int main()
{
// Solving a double precision problem with n = 100.
Test((double)0.0);
// Solving a single precision problem with n = 100.
Test((float)0.0);
} // main
|