1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/*
ARPACK++ v1.2 2/18/2000
c++ interface to ARPACK code.
MODULE RSymGReg.cc.
Example program that illustrates how to solve a real symmetric
generalized eigenvalue problem in regular mode using the
ARrcSymGenEig class.
1) Problem description:
In this example we try to solve A*x = B*x*lambda in regular mode,
where A and B are obtained from the finite element discretization
of the 1-dimensional discrete Laplacian
d^2u / dx^2
on the interval [0,1] with zero Dirichlet boundary conditions
using piecewise linear elements.
2) Data structure used to represent matrices A and B:
ARrcSymGenEig is a class that requires the user to provide a
way to perform the matrix-vector products w = OPv = inv(B)*A*v
and w = B*v. In this example a class called SymGenProblemA was
created with this purpose. SymGenProblemA contains a member
function, MultOPv(v,w), that takes a vector v and returns the
product OPv in w. It also contains an object, B, that stores
matrix B data. The product Bv is performed by MultMv, a member
function of B.
3) The reverse communication interface:
This example uses the reverse communication interface, which
means that the desired eigenvalues cannot be obtained directly
from an ARPACK++ class.
Here, the overall process of finding eigenvalues by using the
Arnoldi method is splitted into two parts. In the first, a
sequence of calls to a function called TakeStep is combined
with matrix-vector products in order to find an Arnoldi basis.
In the second part, an ARPACK++ function like FindEigenvectors
(or EigenValVectors) is used to extract eigenvalues and
eigenvectors.
4) Included header files:
File Contents
----------- -------------------------------------------
sgenprba.h The SymGenProblemA class definition.
arrgsym.h The ARrcSymGenEig class definition.
rsymgsol.h The Solution function.
5) ARPACK Authors:
Richard Lehoucq
Kristyn Maschhoff
Danny Sorensen
Chao Yang
Dept. of Computational & Applied Mathematics
Rice University
Houston, Texas
*/
#include "arrgsym.h"
#include "sgenprba.h"
#include "rsymgsol.h"
template<class T>
void Test(T type)
{
// Creating a pencil.
SymGenProblemA<T> P(100); // n = 100.
// Creating a symmetric eigenvalue problem and defining what we need:
// the four eigenvectors with largest magnitude.
ARrcSymGenEig<T> prob(P.A.ncols(), 4L);
// Finding an Arnoldi basis.
while (!prob.ArnoldiBasisFound()) {
// Calling ARPACK FORTRAN code. Almost all work needed to
// find an Arnoldi basis is performed by TakeStep.
prob.TakeStep();
if ((prob.GetIdo() == 1)||(prob.GetIdo() == -1)) {
// Performing w <- OP*v.
// In regular mode, this product must be performed
// whenever GetIdo is equal to 1 or -1. GetVector supplies
// a pointer to the input vector, v, and PutVector a pointer
// to the output vector, w.
P.MultOPv(prob.GetVector(), prob.PutVector());
}
else if (prob.GetIdo() == 2) {
// Performing w <- B*v.
P.B.MultMv(prob.GetVector(), prob.PutVector());
}
}
// Finding eigenvalues and eigenvectors.
prob.FindEigenvectors();
// Printing solution.
Solution(prob);
} // Test
int main()
{
// Solving a single precision problem with n = 100.
Test((float)0.0);
// Solving a double precision problem with n = 100.
Test((double)0.0);
} // main
|