File: dsymshf.cc

package info (click to toggle)
arpack%2B%2B 2.3-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,548 kB
  • ctags: 3,751
  • sloc: cpp: 16,612; sh: 8,819; ansic: 2,312; makefile: 257
file content (83 lines) | stat: -rw-r--r-- 2,212 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
   ARPACK++ v1.2 2/18/2000
   c++ interface to ARPACK code.

   MODULE DSymShf.cc.
   Example program that illustrates how to solve a real symmetric
   dense standard eigenvalue problem in shift and invert mode using 
   the ARluSymStdEig class.

   1) Problem description:

      In this example we try to solve A*x = x*lambda in shift and  
      invert mode, where A is derived from the standard central 
      difference discretization of the 2-dimensional Laplacian on 
      the unit square with zero Dirichlet boundary conditions.

   2) Data structure used to represent matrix A:

      Although A is very sparse in this example, it is stored
      here as a dense symmetric matrix. The lower triangular part
      of A is stored, by columns, in the vector A.

   3) Library called by this example:

      The LAPACK package is called by ARluSymStdEig to solve
      some linear systems involving (A-sigma*I). This is needed to
      implement the shift and invert strategy.

   4) Included header files:

      File             Contents
      -----------      --------------------------------------------
      dsmatrxa.h       DenseMatrixA, a function that generates
                       matrix A.
      ardsmat.h        The ARdsSymMatrix class definition.
      ardssym.h        The ARluSymStdEig class definition.
      lsymsol.h        The Solution function.

   5) ARPACK Authors:

      Richard Lehoucq
      Kristyn Maschhoff
      Danny Sorensen
      Chao Yang
      Dept. of Computational & Applied Mathematics
      Rice University
      Houston, Texas
*/

#include "dsmatrxa.h"
#include "ardsmat.h"
#include "ardssym.h"
#include "lsymsol.h"


int main()
{

  // Defining variables;

  int     nx;
  int     n;       // Dimension of the problem.
  double* A;       // Pointer to an array that stores the elements of A.

  // Creating a 100x100 matrix.

  nx  = 10;
  DenseMatrixA(nx, n, A);
  ARdsSymMatrix<double> matrix(n, A);

  // Defining what we need: the four eigenvectors of A nearest to 1.0.

  ARluSymStdEig<double> dprob(4L, matrix, 1.0);

  // Finding eigenvalues and eigenvectors.

  dprob.FindEigenvectors();

  // Printing solution.

  Solution(matrix, dprob);

} // main