File: cmatrixa.h

package info (click to toggle)
arpack%2B%2B 2.3-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,548 kB
  • ctags: 3,751
  • sloc: cpp: 16,612; sh: 8,819; ansic: 2,312; makefile: 257
file content (139 lines) | stat: -rw-r--r-- 2,839 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
   ARPACK++ v1.0 8/1/1997
   c++ interface to ARPACK code.

   MODULE CMatrixA.h
   Class template for the nx*nx by nx*nx block tridiagonal matrix

                              | T -I          |
                              |-I  T -I       |
                         OP = |   -I  T       |
                              |        ...  -I|
                              |           -I T|

   derived from the standard central difference discretization
   of the 2 dimensional convection-diffusion operator
                       (Laplacian u) + rho*(du/dx) 
   on a unit square with zero boundary condition.
   T is a nx by nx tridiagonal matrix with DD on the diagonal,
   DL on the subdiagonal, and DU on the superdiagonal.

   ARPACK Authors
      Richard Lehoucq
      Danny Sorensen
      Chao Yang
      Dept. of Computational & Applied Mathematics
      Rice University
      Houston, Texas
*/

#ifndef CMATRIXA_H
#define CMATRIXA_H

#include "arcomp.h"
#include "blas1c.h"
#include "arcomp.h"
#include "matprod.h"

template<class T>
class CompMatrixA: public MatrixWithProduct<arcomplex<T> > {

 private:

  int nx;

  void MultTv(arcomplex<T>* x, arcomplex<T>* y);

 public:

  void MultMv(arcomplex<T>* v, arcomplex<T>* w);

  CompMatrixA(int nxval);

}; // CompMatrixA.


template<class T>
void CompMatrixA<T>::MultTv(arcomplex<T>* x, arcomplex<T>* y)
/*
  Computes the matrix vector multiplication y <- T*x
  where T is a nx by nx tridiagonal matrix with DD on the
  diagonal, DL on the subdiagonal, and DU on the superdiagonal.
*/

{

  int          j;
  arcomplex<T> h, h2, dd, dl, du;

  const arcomplex<T> half(0.5,0.0);
  const arcomplex<T> one(1.0,0.0);
  const arcomplex<T> four(4.0,0.0);
  const arcomplex<T> rho(1.0e2,0.0);

  h   = one/arcomplex<T>(nx+1,0);
  h2  = h*h;
  dd  = four/h2;
  dl  = -one/h2 - half*rho/h;
  du  = -one/h2 + half*rho/h;

  y[0] = dd*x[0] + du*x[1];
  for (j = 1; j<nx-1; j++) {
    y[j] = dl*x[j-1] + dd*x[j] + du*x[j+1];
  }
  y[nx-1] =  dl*x[nx-2] + dd*x[nx-1];

  return;

} // MultTv


template<class T>
void CompMatrixA<T>::MultMv(arcomplex<T>* v, arcomplex<T>* w)
/*
  Matrix-vector subroutine. Computes w <- M*v.
*/

{

  int          j, lo;
  arcomplex<T> h2;

  const arcomplex<T> one(1.0,0.0);

  h2 = one/arcomplex<T>((nx+1)*(nx+1),0.0);

  MultTv(v,w);
  axpy(nx, -one/h2, &v[nx], 1, w, 1);

  for (j = 2; j<=nx-1; j++) {
    lo = (j-1)*nx;
    MultTv(&v[lo], &w[lo]);
    axpy(nx, -one/h2, &v[lo-nx], 1, &w[lo], 1);
    axpy(nx, -one/h2, &v[lo+nx], 1, &w[lo], 1);
  }

  lo = (nx-1)*nx;
  MultTv(&v[lo], &w[lo]);
  axpy(nx, -one/h2, &v[lo-nx], 1, &w[lo], 1);

  return;

} //  MultMv


template<class T>
CompMatrixA<T>::CompMatrixA(int nxval):
  MatrixWithProduct<arcomplex<T> >(nxval*nxval)
/*
  Constructor.
*/

{

  nx = nxval;

} // constructor.


#endif // CMATRIXA_H