File: cmatrixd.h

package info (click to toggle)
arpack%2B%2B 2.3-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,548 kB
  • ctags: 3,751
  • sloc: cpp: 16,612; sh: 8,819; ansic: 2,312; makefile: 257
file content (167 lines) | stat: -rw-r--r-- 3,168 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
   ARPACK++ v1.0 8/1/1997
   c++ interface to ARPACK code.

   MODULE CMatrixD.h
   Class template for the mass matrix formed by using
   piecewise linear elements on [0,1].

   ARPACK Authors
      Richard Lehoucq
      Danny Sorensen
      Chao Yang
      Dept. of Computational & Applied Mathematics
      Rice University
      Houston, Texas
*/

#ifndef CMATRIXD_H
#define CMATRIXD_H

#include "arcomp.h"
#include "matprod.h"
#include "blas1c.h"
#include "lapackc.h"

template<class T>
class ComplexMatrixD: public MatrixWithProduct<arcomplex<T> > {

 private:

  arcomplex<T> *Ad, *Adl, *Adu, *Adu2;
  int          *ipiv;
  int          decsize;

  void FactorDataDeallocate();
  // Eliminates the data structure used on matrix factorization.

 public:

  void FactorM();
  // Factors B, a symmetric tridiagonal matrix with 4 on the
  // main diagonal and 1 on the off-diagonals.

  void MultMv(arcomplex<T> *v, arcomplex<T> *w);
  // Performs the matrix-vector multiplication w <- M*v

  void SolveM(arcomplex<T> *v);
  // Solves M.w = v. v is overwritten with vector w.

  ComplexMatrixD(int nx);
  // Constructor

  virtual ~ComplexMatrixD();
  // Destructor

}; // ComplexMatrixD.


template<class T>
inline void ComplexMatrixD<T>::FactorDataDeallocate()
{

  if (Ad != 0) {
    delete[] Ad;
    delete[] Adl;
    delete[] Adu;
    delete[] Adu2;
    delete[] ipiv;
  }

} // FactorDataDeallocate


template<class T>
void ComplexMatrixD<T>::FactorM()
{

  int          j, ierr;
  arcomplex<T> h;

  const arcomplex<T> one(1.0, 0.0);
  const arcomplex<T> four(4.0, 0.0);

  if (decsize != this->ncols()) {
    decsize = this->ncols();
    FactorDataDeallocate();
    Ad   = new arcomplex<T>[decsize];
    Adl  = new arcomplex<T>[decsize];
    Adu  = new arcomplex<T>[decsize];
    Adu2 = new arcomplex<T>[decsize];
    ipiv = new int[decsize];
  }

  h  = one/arcomplex<T>((this->ncols()+1),0.0);

  for (j=0; j<this->ncols()-1; j++) {
    Adl[j] = one*h;
    Ad[j]  = four*h;
    Adu[j] = one*h;
  }
  Ad[this->ncols()-1]  = four*h;

  gttrf(this->ncols(), Adl, Ad, Adu, Adu2, ipiv, ierr);

} // FactorM.


template<class T>
void ComplexMatrixD<T>::MultMv(arcomplex<T> *v, arcomplex<T> *w)
{

  int          j;
  arcomplex<T> h;

  const arcomplex<T> one(1.0, 0.0);
  const arcomplex<T> four(4.0, 0.0);

  w[0] = four*v[0] + one*v[1];
  for (j=1; j<this->ncols()-1; j++) {
    w[j] = one*v[j-1] + four*v[j] + one*v[j+1];
  }
  w[this->ncols()-1] = one*v[this->ncols()-2] + four*v[this->ncols()-1];

  h = one/arcomplex<T>((this->ncols()+1),0.0);
  scal(this->ncols(), h, w, 1);

} // MultMv.


template<class T>
inline void ComplexMatrixD<T>::SolveM(arcomplex<T> *v)
{

  int  ierr;
  char *type = "N";

  gttrs(type, this->ncols(), 1, Adl, Ad, Adu, Adu2, ipiv, v, this->ncols(), ierr);

} // SolveM.


template<class T>
inline ComplexMatrixD<T>::
ComplexMatrixD(int nx): MatrixWithProduct<arcomplex<T> >(nx)
{

  decsize = 0;
  Ad      = 0;
  Adl     = 0;
  Adu     = 0;
  Adu2    = 0;
  ipiv    = 0;

} // Constructor.


template<class T>
inline ComplexMatrixD<T>::~ComplexMatrixD()
{

  FactorDataDeallocate();

} // Destructor.


#endif // CMATRIXD_H