1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/*
ARPACK++ v1.2 2/18/2000
c++ interface to ARPACK code.
MODULE RNSymGRe.cc.
Example program that illustrates how to solve a real
nonsymmetric generalized eigenvalue problem in regular mode
using the ARrcNonSymGenEig class.
1) Problem description:
In this example we try to solve A*x = B*x*lambda in regular mode,
where A and B are derived from the finite element discretization
of the 1-dimensional convection-diffusion operator
(d^2u / dx^2) + rho*(du/dx)
on the interval [0,1] with zero Dirichlet boundary conditions
using linear elements.
2) Data structure used to represent matrix A:
ARrcNonSymGenEig is a class that requires the user to provide a
way to perform the matrix-vector products w = OPv = inv(B)*A*v
and w = B*v. In this example a class called NonSymGenProblemA
was created with this purpose. NonSymGenProblemA contains a
member function, MultOPv(v,w), that takes a vector v and returns
the product OPv in w. It also contains an object, B, that stores
matrix B data. The product Bv is performed by MultMv, a member
function of B.
3) The reverse communication interface:
This example uses the reverse communication interface, which
means that the desired eigenvalues cannot be obtained directly
from an ARPACK++ class.
Here, the overall process of finding eigenvalues by using the
Arnoldi method is splitted into two parts. In the first, a
sequence of calls to a function called TakeStep is combined
with matrix-vector products in order to find an Arnoldi basis.
In the second part, an ARPACK++ function like FindEigenvectors
(or EigenValVectors) is used to extract eigenvalues and
eigenvectors.
4) Included header files:
File Contents
----------- -------------------------------------------
ngenprba.h The NonSymGenProblemA class definition.
arrgnsym.h The ARrcNonSymGenEig class definition.
rnsymgsl.h The Solution function.
5) ARPACK Authors:
Richard Lehoucq
Kristyn Maschhoff
Danny Sorensen
Chao Yang
Dept. of Computational & Applied Mathematics
Rice University
Houston, Texas
*/
#include "ngenprba.h"
#include "rnsymgsl.h"
#include "arrgnsym.h"
template<class T>
void Test(T type)
{
// Creating a pencil.
NonSymGenProblemA<T> P(100); // n = 100.
// Creating a nonsymmetric eigenvalue problem and defining what we need:
// the four eigenvectors with largest magnitude.
ARrcNonSymGenEig<T> prob(P.A.ncols(), 4L);
// Finding an Arnoldi basis.
while (!prob.ArnoldiBasisFound()) {
// Calling ARPACK FORTRAN code. Almost all work needed to
// find an Arnoldi basis is performed by TakeStep.
prob.TakeStep();
if ((prob.GetIdo() == 1)||(prob.GetIdo() == -1)) {
// Performing w <- OP*v.
// In regular mode, this product must be performed
// whenever GetIdo is equal to 1 or -1. GetVector supplies
// a pointer to the input vector, v, and PutVector a pointer
// to the output vector, w.
P.MultOPv(prob.GetVector(), prob.PutVector());
}
else if (prob.GetIdo() == 2) {
// Performing w <- B*v.
P.B.MultMv(prob.GetVector(), prob.PutVector());
}
}
// Finding eigenvalues and eigenvectors.
prob.FindEigenvectors();
// Printing solution.
Solution(prob);
} // Test.
int main()
{
// Solving a double precision problem with n = 100.
Test((double)0.0);
// Solving a single precision problem with n = 100.
Test((float)0.0);
} // main
|