1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/*
ARPACK++ v1.2 2/20/2000
c++ interface to ARPACK code.
MODULE LNMatrxA.h
Function template for the 2-D Brusselator Wave model.
*/
#ifndef LNMATRXA_H
#define LNMATRXA_H
#include <math.h>
template<class ARFLOAT, class ARINT>
void BrusselatorMatrix(ARFLOAT L, ARFLOAT delta1, ARFLOAT delta2,
ARFLOAT alpha, ARFLOAT beta, ARINT n, ARINT& nnz,
ARFLOAT* &A, ARINT* &irow, ARINT* &pcol)
{
// Defining internal variables.
ARINT i, j, icount;
ARINT m, m2;
ARFLOAT h, tau1, tau2;
ARFLOAT d1, d2, alpha2;
// Defining constants.
const ARFLOAT one = 1.0;
const ARFLOAT four = 4.0;
m = ARINT(sqrt(n/2));
m2 = 2*m;
h = one / ARFLOAT(m+1);
tau1 = delta1/(h*h*L*L);
tau2 = delta2/(h*h*L*L);
alpha2 = alpha*alpha;
d1 = -tau1*four + beta - one;
d2 = -tau2*four - alpha2;
// Defining the number of nonzero elements of matrix.
nnz = 6*n-8*m;
// Creating output vectors.
A = new ARFLOAT[nnz];
irow = new ARINT[nnz];
pcol = new ARINT[n+1];
// Creating brusselator matrix.
pcol[0] = 0;
// First two columns.
A[0] = d1; irow[0] = 0;
A[1] = -beta; irow[1] = 1;
A[2] = tau1; irow[2] = 2;
A[3] = tau1; irow[3] = m2;
pcol[1] = 4;
A[4] = alpha2; irow[4] = 0;
A[5] = d2; irow[5] = 1;
A[6] = tau2; irow[6] = 3;
A[7] = tau2; irow[7] = m2+1;
pcol[2] = 8;
// Next 2m-2 columns.
i = pcol[2];
for (j = 2; j < m2; j += 2) {
A[i] = tau1; irow[i++] = j-2;
A[i] = d1; irow[i++] = j;
A[i] = -beta; irow[i++] = j+1;
if (j != m2-2) {
A[i] = tau1; irow[i++] = j+2;
}
A[i] = tau1; irow[i++] = m2+j;
pcol[j+1] = i;
A[i] = tau2; irow[i++] = j-1;
A[i] = alpha2; irow[i++] = j;
A[i] = d2; irow[i++] = j+1;
if (j != m2-2) {
A[i] = tau2; irow[i++] = j+3;
}
A[i] = tau2; irow[i++] = m2+j+1;
pcol[j+2] = i;
}
// Next n-4m columns.
icount = 0;
for (j = m2; j < n-m2; j += 2) {
A[i] = tau1; irow[i++] = j-m2;
if (icount != 0) {
A[i] = tau1; irow[i++] = j-2;
}
A[i] = d1; irow[i++] = j;
A[i] = -beta; irow[i++] = j+1;
if (icount != m2-2) {
A[i] = tau1; irow[i++] = j+2;
}
A[i] = tau1; irow[i++] = j+m2;
pcol[j+1] = i;
A[i] = tau2; irow[i++] = j-m2+1;
if (icount != 0) {
A[i] = tau2; irow[i++] = j-1;
}
A[i] = alpha2; irow[i++] = j;
A[i] = d2; irow[i++] = j+1;
if (icount != m2-2) {
A[i] = tau2; irow[i++] = j+3;
}
A[i] = tau2; irow[i++] = j+m2+1;
pcol[j+2] = i;
icount = (icount+2)%(m2);
}
// Next 2m-2 columns.
for (j = n-m2; j < n-2; j += 2) {
A[i] = tau1; irow[i++] = j-m2;
if (j != n-m2) {
A[i] = tau1; irow[i++] = j-2;
}
A[i] = d1; irow[i++] = j;
A[i] = -beta; irow[i++] = j+1;
A[i] = tau1; irow[i++] = j+2;
pcol[j+1] = i;
A[i] = tau2; irow[i++] = j-m2+1;
if (j != n-m2) {
A[i] = tau2; irow[i++] = j-1;
}
A[i] = alpha2; irow[i++] = j;
A[i] = d2; irow[i++] = j+1;
A[i] = tau2; irow[i++] = j+3;
pcol[j+2] = i;
}
// Last two columns.
A[i] = tau1; irow[i++] = n-m2-2;
A[i] = tau1; irow[i++] = n-4;
A[i] = d1; irow[i++] = n-2;
A[i] = -beta; irow[i++] = n-1;
pcol[n-1] = i;
A[i] = tau2; irow[i++] = n-m2-1;
A[i] = tau2; irow[i++] = n-3;
A[i] = alpha2; irow[i++] = n-2;
A[i] = d2; irow[i++] = n-1;
pcol[n] = i;
} // BrusselatorMatrix.
#endif // LNMATRXA_H
|