File: dnband.f

package info (click to toggle)
arpack 2.1%2Bparpack96.dfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 13,308 kB
  • ctags: 17,637
  • sloc: fortran: 81,755; makefile: 641; ansic: 159
file content (1385 lines) | stat: -rw-r--r-- 52,025 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
c \BeginDoc
c
c \Name: dnband
c
c \Description:
c
c  This subroutine returns the converged approximations to eigenvalues
c  of A*z = lambda*B*z and (optionally):
c
c      (1) The corresponding approximate eigenvectors;
c
c      (2) An orthonormal basis for the associated approximate
c          invariant subspace;
c
c      (3) Both.
c
c  Matrices A and B are stored in LAPACK-style banded form.
c
c  There is negligible additional cost to obtain eigenvectors.  An orthonormal
c  basis is always computed.  There is an additional storage cost of n*nev
c  if both are requested (in this case a separate array Z must be supplied).
c
c  The approximate eigenvalues and vectors are commonly called Ritz
c  values and Ritz vectors respectively.  They are referred to as such
c  in the comments that follow.  The computed orthonormal basis for the
c  invariant subspace corresponding to these Ritz values is referred to as a
c  Schur basis.
c
c  dnband can be called with one of the following modes:
c
c  Mode 1:  A*z = lambda*z.
c           ===> OP = A  and  B = I.
c
c  Mode 2:  A*z = lambda*M*z, M symmetric positive definite
c           ===> OP = inv[M]*A  and  B = M.
c
c  Mode 3:  A*z = lambda*M*z, M symmetric semi-definite
c           ===> OP = Real_Part{ inv[A - sigma*M]*M }  and  B = M. 
c           ===> shift-and-invert mode (in real arithmetic)
c           If OP*z = amu*z, then 
c           amu = 1/2 * [ 1/(lambda-sigma) + 1/(lambda-conjg(sigma)) ].
c           Note: If sigma is real, i.e. imaginary part of sigma is zero;
c                 Real_Part{ inv[A - sigma*M]*M } == inv[A - sigma*M]*M 
c                 amu == 1/(lambda-sigma). 
c  
c  Mode 4:  A*z = lambda*M*z, M symmetric semi-definite
c           ===> OP = Imaginary_Part{ inv[A - sigma*M]*M }  and  B = M. 
c           ===> shift-and-invert mode (in real arithmetic)
c           If OP*z = amu*z, then 
c           amu = 1/2i * [ 1/(lambda-sigma) - 1/(lambda-conjg(sigma)) ].
c
c
c  The choice of mode must be specified in IPARAM(7) defined below.
c
c \Usage
c   call dnband
c      ( RVEC, HOWMNY, SELECT, DR, DI, Z, LDZ, SIGMAR, SIGMAI, 
c        WORKEV, V, N, AB, MB, LDA, RFAC, CFAC, KL, KU, WHICH, 
c        BMAT, NEV, TOL, RESID, NCV, V, LDV, IPARAM, WORKD, 
c        WORKL, LWORKL, WORKC, IWORK, INFO )
c
c \Arguments
c 
c  RVEC    LOGICAL  (INPUT) 
c          Specifies whether a basis for the invariant subspace corresponding 
c          to the converged Ritz value approximations for the eigenproblem 
c          A*z = lambda*B*z is computed.
c
c             RVEC = .FALSE.     Compute Ritz values only.
c
c             RVEC = .TRUE.      Compute the Ritz vectors or Schur vectors.
c                                See Remarks below. 
c
c  HOWMNY  Character*1  (INPUT) 
c          Specifies the form of the basis for the invariant subspace 
c          corresponding to the converged Ritz values that is to be computed.
c
c          = 'A': Compute NEV Ritz vectors; 
c          = 'P': Compute NEV Schur vectors;
c          = 'S': compute some of the Ritz vectors, specified
c                 by the logical array SELECT.
c
c  SELECT  Logical array of dimension NCV.  (INPUT)
c          If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
c          computed. To select the Ritz vector corresponding to a
c          Ritz value (DR(j), DI(j)), SELECT(j) must be set to .TRUE.. 
c          If HOWMNY = 'A' or 'P', SELECT is used as internal workspace.
c
c  DR      Double precision array of dimension NEV+1.  (OUTPUT)
c          On exit, DR contains the real part of the Ritz value approximations 
c          to the eigenvalues of A*z = lambda*B*z. 
c
c  DI      Double precision array of dimension NEV+1.  (OUTPUT)
c          On exit, DI contains the imaginary part of the Ritz value 
c          approximations to the eigenvalues of A*z = lambda*B*z associated
c          with DR. 
c
c          NOTE: When Ritz values are complex, they will come in complex 
c                conjugate pairs.  If eigenvectors are requested, the 
c                corresponding Ritz vectors will also come in conjugate 
c                pairs and the real and imaginary parts of these are 
c                represented in two consecutive columns of the array Z 
c                (see below).
c
c  Z       Real N by NEV+1 array if RVEC = .TRUE. and HOWMNY = 'A'. (OUTPUT)
c          On exit,
c          if RVEC = .TRUE. and HOWMNY = 'A', then the columns of
c          Z represent approximate eigenvectors (Ritz vectors) corresponding
c          to the NCONV=IPARAM(5) Ritz values for eigensystem
c          A*z = lambda*B*z computed by DNAUPD.
c
c          The complex Ritz vector associated with the Ritz value
c          with positive imaginary part is stored in two consecutive
c          columns.  The first column holds the real part of the Ritz
c          vector and the second column holds the imaginary part.  The
c          Ritz vector associated with the Ritz value with negative
c          imaginary part is simply the complex conjugate of the Ritz vector
c          associated with the positive imaginary part.
c
c          If  RVEC = .FALSE. or HOWMNY = 'P', then Z is not referenced.
c
c          NOTE: If if RVEC = .TRUE. and a Schur basis is not required,
c          the array Z may be set equal to first NEV+1 columns of the Arnoldi
c          basis array V computed by DNAUPD.  In this case the Arnoldi basis
c          will be destroyed and overwritten with the eigenvector basis.
c
c  LDZ     Integer.  (INPUT) 
c          The leading dimension of the array Z.  If Ritz vectors are 
c          desired, then  LDZ >= max( 1, N ).  In any case,  LDZ >= 1.  
c 
c  SIGMAR  Double precision  (INPUT) 
c          If IPARAM(7) = 3 or 4, represents the real part of the shift. 
c          Not referenced if IPARAM(7) = 1 or 2.  
c 
c  SIGMAI  Double precision  (INPUT) 
c          If IPARAM(7) = 3 or 4, represents the imaginary part of the 
c          shift. 
c          Not referenced if IPARAM(7) = 1 or 2.  
c 
c  WORKEV  Double precision work array of dimension 3*NCV.  (WORKSPACE) 
c 
c  N       Integer.  (INPUT) 
c          Dimension of the eigenproblem.  
c 
c  AB      Double precision array of dimension LDA by N. (INPUT)
c          The matrix A in band storage, in rows KL+1 to
c          2*KL+KU+1; rows 1 to KL of the array need not be set.
c          The j-th column of A is stored in the j-th column of the
c          array AB as follows:
c          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
c
c  MB      Double precision array of dimension LDA by N. (INPUT)
c          The matrix M in band storage, in rows KL+1 to
c          2*KL+KU+1; rows 1 to KL of the array need not be set. 
c          The j-th column of M is stored in the j-th column of the
c          array AB as follows:
c          MB(kl+ku+1+i-j,j) = M(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
c          Not referenced if IPARAM(7) = 1
c
c  LDA     Integer. (INPUT)
c          Leading dimension of AB, MB, RFAC and CFAC. 
c
c  RFAC    Double precision array of LDA by N. (WORKSPACE/OUTPUT)
c          RFAC is used to store the LU factors of MB when IPARAM(7) = 2 
c          is invoked.  It is used to store the LU factors of
c          (A-sigma*M) when IPARAM(7) = 3 is invoked with a real shift.
c          It is not referenced when IPARAM(7) = 1 or 4.
c
c  CFAC    Complex*16 array of LDA by N. (WORKSPACE/OUTPUT)
c          CFAC is used to store (A-SIGMA*M) and its LU factors
c          when IPARAM(7) = 3 or 4 are used with a complex shift SIGMA.  
c          On exit, it contains the LU factors of (A-SIGMA*M).  
c          It is not referenced when IPARAM(7) = 1 or 2.
c
c  KL      Integer. (INPUT)
c          Max(number of subdiagonals of A, number of subdiagonals of M)
c
c  KU      Integer. (OUTPUT)
c          Max(number of superdiagonals of A, number of superdiagonals of M)
c
c  WHICH   Character*2.  (INPUT)
c          When IPARAM(7)= 1 or 2,  WHICH can be set to any one of
c          the following.
c  
c            'LM' -> want the NEV eigenvalues of largest magnitude.
c            'SM' -> want the NEV eigenvalues of smallest magnitude.
c            'LR' -> want the NEV eigenvalues of largest real part.
c            'SR' -> want the NEV eigenvalues of smallest real part.
c            'LI' -> want the NEV eigenvalues of largest imaginary part.
c            'SI' -> want the NEV eigenvalues of smallest imaginary part.
c
c          When IPARAM(7) = 3 or 4, WHICH should be set to 'LM' only. 
c          
c  BMAT    Character*1.  (INPUT)
c          BMAT specifies the type of the matrix B that defines the
c          semi-inner product for the operator OP.
c          BMAT = 'I' -> standard eigenvalue problem A*z = lambda*z
c          BMAT = 'G' -> generalized eigenvalue problem A*z = lambda*M*z

c  NEV     Integer. (INPUT)
c          Number of eigenvalues to be computed.
c   
c  TOL     Double precision scalar.  (INPUT)
c          Stopping criteria: the relative accuracy of the Ritz value 
c          is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I)).
c          If TOL .LE. 0. is passed a default is set:
c          DEFAULT = DLAMCH('EPS')  (machine precision as computed
c                    by the LAPACK auxiliary subroutine DLAMCH).
c
c  RESID   Double precision array of length N.  (INPUT/OUTPUT)
c          On INPUT:
c          If INFO .EQ. 0, a random initial residual vector is used.
c          If INFO .NE. 0, RESID contains the initial residual vector,
c                          possibly from a previous run.
c          On OUTPUT:
c          RESID contains the final residual vector.
c
c  NCV     Integer.  (INPUT)
c          Number of columns of the matrix V (less than or equal to N).
c          Represents the dimension of the Arnoldi basis constructed
c          by dnaupd for OP.
c
c  V       Double precision array N by NCV+1.  (OUTPUT)
c          Upon OUTPUT: If RVEC = .TRUE. the first NCONV=IPARAM(5) columns 
c                       represent approximate Schur vectors that span the 
c                       desired invariant subspace.
c          NOTE: The array Z may be set equal to first NEV+1 columns of the 
c          Arnoldi basis vector array V computed by DNAUPD. In this case
c          if RVEC = .TRUE. and HOWMNY='A', then the first NCONV=IPARAM(5) 
c          are the desired Ritz vectors.
c
c  LDV     Integer.  (INPUT)
c          Leading dimension of V exactly as declared in the calling
c          program.
c
c  IPARAM  Integer array of length 11.  (INPUT/OUTPUT)
c          IPARAM(1) = ISHIFT: 
c          The shifts selected at each iteration are used to restart
c          the Arnoldi iteration in an implicit fashion.
c          It is set to 1 in this subroutine.  The user do not need
c          to set this parameter.
c           ----------------------------------------------------------
c          ISHIFT = 1: exact shift with respect to the current
c                      Hessenberg matrix H.  This is equivalent to
c                      restarting the iteration from the beginning
c                      after updating the starting vector with a linear
c                      combination of Ritz vectors associated with the
c                      "wanted" eigenvalues.
c          -------------------------------------------------------------
c
c          IPARAM(2) = No longer referenced. 
c
c          IPARAM(3) = MXITER
c          On INPUT:  max number of Arnoldi update iterations allowed.
c          On OUTPUT: actual number of Arnoldi update iterations taken.
c
c          IPARAM(4) = NB: blocksize to be used in the recurrence.
c          The code currently works only for NB = 1.
c
c          IPARAM(5) = NCONV: number of "converged" eigenvalues.
c
c          IPARAM(6) = IUPD
c          Not referenced. Implicit restarting is ALWAYS used.
c
c          IPARAM(7) = IPARAM(7): 
c          On INPUT determines what type of eigenproblem is being solved.
c          Must be 1,2,3,4; See under \Description of dnband for the 
c          four modes available.
c
c          IPARAM(9) = NUMOP, IPARAM(10) = NUMOPB, IPARAM(11) = NUMREO,
c          OUTPUT: NUMOP  = total number of OP*z operations,
c                  NUMOPB = total number of B*z operations if BMAT='G',
c                  NUMREO = total number of steps of re-orthogonalization.
c
c WORKD    Double precision work array of length at least 3*n. (WORKSPACE)
c
c WORKL    Double precision work array of length LWORKL. (WORKSPACE)
c
c LWORKL   Integer.  (INPUT)
c          LWORKL must be at least 3*NCV**2 + 6*NCV.
c
c WORKC    Complex*16 array of length N. (WORKSPACE)
c          Workspace used when IPARAM(7) = 3 or 4 for storing a temporary 
c          complex vector.
c
c IWORK    Integer array of dimension at least N. (WORKSPACE)
c          Used when IPARAM(7)=2,3,4 to store the pivot information in the 
c          factorization of M or (A-SIGMA*M).
c            
c INFO     Integer.  (INPUT/OUTPUT)
c          Error flag on output.
c          =  0: Normal exit.
c          =  1: The Schur form computed by LAPACK routine dlahqr
c                could not be reordered by LAPACK routine dtrsen.
c                Re-enter subroutine DNEUPD with IPARAM(5)=NCV and 
c                increase the size of the arrays DR and DI to have 
c                dimension at least NCV and allocate at least NCV 
c                columns for Z. NOTE: Not necessary if Z and V share 
c                the same space. Please notify the authors.
c
c          = -1: N must be positive.
c          = -2: NEV must be positive.
c          = -3: NCV-NEV >= 2 and less than or equal to N.
c          = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
c          = -6: BMAT must be one of 'I' or 'G'.
c          = -7: Length of private work WORKL array is not sufficient.
c          = -8: Error return from calculation of a real Schur form.
c                Informational error from LAPACK routine dlahqr.
c          = -9: Error return from calculation of eigenvectors.
c                Informational error from LAPACK routine dtrevc.
c          = -10: IPARAM(7) must be 1,2,3,4.
c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
c          = -12: HOWMNY = 'S' not yet implemented
c          = -13: HOWMNY must be one of 'A' or 'P'
c          = -14: DNAUPD did not find any eigenvalues to sufficient
c                 accuracy.
c          = -15: Overflow occurs when we try to transform the Ritz 
c                 values returned from DNAUPD to those of the original
c                 problem using Rayleigh Quotient. 
c          = -9999: Could not build an Arnoldi factorization.
c                   IPARAM(5) returns the size of the current
c                   Arnoldi factorization.
c
c \EndDoc
c
c------------------------------------------------------------------------
c
c\BeginLib
c
c\References:
c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c     pp 357-385.
c
c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
c     Restarted Arnoldi Iteration", Ph.D thesis, TR95-13, Rice Univ,
c     May 1995.
c
c\Routines called:
c     dnaupd  ARPACK reverse communication interface routine.
c     dneupd  ARPACK routine that returns Ritz values and (optionally)
c             Ritz vectors.
c     dgbtrf  LAPACK band matrix factorization routine.
c     dgbtrs  LAPACK band linear system solve routine.
c     zgbtrf  LAPACK complex band matrix factorization routine.
c     zgbtrs  LAPACK complex linear system solve routine.
c     dlacpy  LAPACK matrix copy routine.
c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
c     dlamch  LAPACK routine to compute the underflow threshold.
c     dcopy   Level 1 BLAS that copies one vector to another.
c     ddot    Level 1 BLAS that computes the dot product of two vectors.
c     dnrm2   Level 1 BLAS that computes the norm of a vector.
c     dgbmv   Level 2 BLAS that computes the band matrix vector product.
c
c\Remarks
c
c  1. Currently only HOWMNY = 'A' and 'P' are implemented.
c
c     Let X' denote the transpose of X.
c
c  2. Schur vectors are an orthogonal representation for the basis of
c     Ritz vectors. Thus, their numerical properties are often superior.
c     If RVEC = .TRUE. then the relationship
c             A * V(:,1:IPARAM(5)) = V(:,1:IPARAM(5)) * T, and
c     V(:,1:IPARAM(5))' * V(:,1:IPARAM(5)) = I are approximately satisfied.
c     Here T is the leading submatrix of order IPARAM(5) of the real 
c     upper quasi-triangular matrix stored workl(ipntr(12)). That is,
c     T is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; 
c     each 2-by-2 diagonal block has its diagonal elements equal and its
c     off-diagonal elements of opposite sign.  Corresponding to each 2-by-2
c     diagonal block is a complex conjugate pair of Ritz values. The real
c     Ritz values are stored on the diagonal of T.
c
c\Author
c     Danny Sorensen
c     Richard Lehoucq
c     Chao Yang
c     Dept. of Computational &
c     Applied Mathematics
c     Rice University
c     Houston, Texas
c
c\SCCS Information: @(#)
c FILE: nband.F   SID: 2.3   DATE OF SID: 10/17/00   RELEASE: 2
c
c\EndLib
c
c---------------------------------------------------------------------
c
      subroutine dnband( rvec, howmny, select, dr, di, z, ldz,  sigmar, 
     &           sigmai, workev, n, ab, mb, lda, rfac,  cfac, kl, ku, 
     &           which, bmat, nev, tol, resid,  ncv, v, ldv, 
     &           iparam, workd, workl, lworkl, workc, iwork, info)
c
c     %------------------%
c     | Scalar Arguments |
c     %------------------%
c 
      character        which*2, bmat, howmny
      integer          n, lda, kl, ku, nev, ncv, ldv,
     &                 ldz, lworkl, info  
      Double precision
     &                 tol, sigmar, sigmai 
c
c     %-----------------%
c     | Array Arguments |
c     %-----------------%
c
      integer          iparam(*), iwork(*)
      logical          select(*)
      Double precision
     &                 dr(*), di(*), resid(*), v(ldv,*), z(ldz,*),
     &                 ab(lda,*), mb(lda,*), rfac(lda,*), 
     &                 workd(*), workl(*), workev(*)
      Complex*16
     &                 cfac(lda,*), workc(*)
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
      integer          ipntr(14)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      integer          ido, i, j, type, imid, itop, ibot, ierr
      Double precision        
     &                 numr, denr, deni, dmdul, safmin 
      logical          rvec, first 
c
c     %------------%
c     | Parameters |
c     %------------%
c
      Double precision
     &                  one, zero
      parameter        (one = 1.0D+0, zero = 0.0D+0)
c
c
c     %-----------------------------%
c     | LAPACK & BLAS routines used |
c     %-----------------------------%
c
      Double precision
     &                 ddot, dnrm2, dlapy2, dlamch
      external         ddot, dcopy, dgbmv, zgbtrf, zgbtrs, dgbtrf, 
     &                 dgbtrs, dnrm2, dlapy2, dlacpy, dlamch
c
c     %---------------------%
c     | Intrinsic Functions |
c     %---------------------%
c
      Intrinsic        dble, dimag, dcmplx
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c
c     %--------------------------------%
c     | safmin = safe minimum is such  |
c     | that 1/sfmin does not overflow |
c     %--------------------------------%
c
      safmin = dlamch('safmin')
c     
c     %----------------------------------------------------------------%
c     | Set type of the problem to be solved. Check consistency        |
c     | between BMAT and IPARAM(7).                                    |
c     | type = 1 --> Solving standard problem in regular mode.         |
c     | type = 2 --> Solving standard problem in shift-invert mode.    | 
c     | type = 3 --> Solving generalized problem in regular mode.      |
c     | type = 4 --> Solving generalized problem in shift-invert mode. |
c     | type = 5 --> Solving standard problem in shift-invert mode     |
c     |              using iparam(7) = 4 in DNAUPD.                    |
c     | type = 6 --> Solving generalized problem in shift-invert mode. | 
c     |              using iparam(7) = 4 in DNAUPD.                    |
c     %----------------------------------------------------------------%
c
      if ( iparam(7) .eq. 1 ) then
         type = 1
      else if ( iparam(7) .eq. 3 .and. bmat .eq. 'I') then
         type = 2
      else if ( iparam(7) .eq. 2 ) then
         type = 3
      else if ( iparam(7) .eq. 3 .and. bmat .eq. 'G') then
         type = 4 
      else if ( iparam(7) .eq. 4 .and. bmat .eq. 'I') then
         type = 5
      else if ( iparam(7) .eq. 4 .and. bmat .eq. 'G') then 
         type = 6
      else
         print*, ' '
         print*, 'BMAT is inconsistent with IPARAM(7).'
         print*, ' ' 
         go to 9000
      end if
c
c     %----------------------------------%       
c     | When type = 5,6 are used, sigmai |
c     | must be nonzero.                 |
c     %----------------------------------%
c
      if ( type .eq. 5 .or. type .eq. 6 ) then
          if ( sigmai .eq. zero ) then
             print*, ' '
             print*, '_NBAND: sigmai must be nonzero when type 5 or 6 
     &                is used. '
             print*, ' '
             go to 9000
          end if    
      end if
c
c     %------------------------%
c     | Initialize the reverse |
c     | communication flag.    |         
c     %------------------------%
c
      ido   = 0
c
c     %----------------%
c     | Exact shift is |
c     | used.          |
c     %----------------%
c
      iparam(1) = 1
c
c     %-----------------------------------%
c     | Both matrices A and M are stored  |
c     | between rows itop and ibot.  Imid |
c     | is the index of the row that      |
c     | stores the diagonal elements.     |
c     %-----------------------------------%
c
      itop = kl + 1
      imid = kl + ku + 1
      ibot = 2*kl + ku + 1
c
      if ( type .eq. 2 .or. type .eq. 5 ) then
c
c         %-------------------------------%
c         | Solving a standard eigenvalue |
c         | problem in shift-invert mode. |
c         | Factor (A-sigma*I).           |
c         %-------------------------------%
c
          if (sigmai .eq. zero) then
c            
c            %-----------------------------------%
c            | Construct (A-sigmar*I) and factor |
c            | in real arithmetic.               |
c            %-----------------------------------%
c
             call dlacpy ('A', ibot, n, ab, lda, rfac, lda )
             do 10 j = 1, n
                rfac(imid,j) =  ab(imid,j) - sigmar
  10         continue
             call dgbtrf(n, n, kl, ku, rfac, lda, iwork, ierr )
             if (ierr .ne. 0) then
                print*, ' ' 
                print*, ' _NBAND: Error with _gbtrf. '
                print*, ' '
                go to  9000
             end if
c
          else
c
c            %-----------------------------------%
c            | Construct (A-sigmar*I) and factor |
c            | in COMPLEX arithmetic.            |
c            %-----------------------------------%
c
             do 30 j = 1, n
                do 20 i = itop, ibot
                   cfac(i,j) = dcmplx(ab(i,j))
  20            continue 
  30         continue
c
             do 40 j = 1, n
                cfac(imid,j) = cfac(imid,j) 
     $                         - dcmplx(sigmar, sigmai)
  40         continue 
c 
             call zgbtrf(n, n, kl, ku, cfac, lda, iwork, ierr ) 
             if ( ierr .ne. 0) then
                print*, ' '
                print*, ' _NBAND: Error with _gbtrf. '
                print*, ' '
                go to  9000
             end if
c        
          end if
      
      else if ( type .eq. 3 ) then
c
c        %-----------------------------------------------%
c        | Solving generalized eigenvalue problem in     |
c        | regular mode. Copy M to rfac, and call LAPACK |
c        | routine dgbtrf to factor M.                   |
c        %-----------------------------------------------%
c
         call dlacpy ('A', ibot, n, mb, lda, rfac, lda )
         call dgbtrf(n, n, kl, ku, rfac, lda, iwork, ierr)
         if (ierr .ne. 0) then
             print*, ' ' 
             print*,'_NBAND:  Error with _gbtrf.'
             print*, ' '
             go to 9000
         end if
c
      else if ( type .eq. 4 .or. type .eq. 6 ) then
c
c        %-------------------------------------------%
c        | Solving generalized eigenvalue problem in |
c        | shift-invert mode.                        |
c        %-------------------------------------------%
c 
         if ( sigmai .eq. zero ) then
c
c            %--------------------------------------------%
c            | Construct (A - sigma*M) and factor in real |
c            | arithmetic.                                |
c            %--------------------------------------------%
c
             do 60 j = 1,n
                do 50 i = itop, ibot 
                   rfac(i,j) = ab(i,j) - sigmar*mb(i,j)
  50            continue
  60         continue
c
             call dgbtrf(n, n, kl, ku, rfac, lda, iwork, ierr)
             if ( ierr .ne. 0 )  then
                 print*, ' '
                 print*, '_NBAND: Error with _gbtrf.'
                 print*, ' '
                 go to 9000
             end if
c
         else
c
c            %-----------------------------------------------%
c            | Construct (A - sigma*M) and factor in complex |
c            | arithmetic.                                   |
c            %-----------------------------------------------% 
c
             do 80 j = 1,n
                do 70 i = itop, ibot 
                   cfac(i,j) = dcmplx( ab(i,j)-sigmar*mb(i,j), 
     &                         -sigmai*mb(i,j) )
  70            continue 
  80         continue
c
             call zgbtrf(n, n, kl, ku, cfac, lda, iwork, ierr)
             if ( ierr .NE. 0 )  then
                print*, ' '
                print*, '_NBAND: Error with _gbtrf.'
                print*, ' '
                go to 9000
             end if
c 
         end if
c
      end if
c
c     %--------------------------------------------%
c     |  M A I N   L O O P (reverse communication) |
c     %--------------------------------------------%
c
  90  continue 
c
      call dnaupd ( ido, bmat, n, which, nev, tol, resid, ncv,
     &              v, ldv, iparam, ipntr, workd, workl, lworkl,
     &              info )
c
      if (ido .eq. -1) then
c
         if ( type .eq. 1) then
c
c           %----------------------------%
c           | Perform  y <--- OP*x = A*x |
c           %----------------------------%
c
            call dgbmv('Notranspose', n, n, kl, ku, one, ab(itop,1), 
     &                 lda, workd(ipntr(1)), 1, zero, 
     &                 workd(ipntr(2)), 1)
c
         else if ( type .eq. 2 ) then
c
            if (sigmai .eq. zero) then
c
c              %----------------------------------%
c              | Shift is real.  Perform          | 
c              | y <--- OP*x = inv[A-sigmar*I]*x  |
c              | to force the starting vector     |
c              | into the range of OP.            |
c              %----------------------------------%
c
               call dcopy (n, workd(ipntr(1)), 1, workd(ipntr(2)), 1)
               call dgbtrs ('Notranspose', n, kl, ku, 1, rfac, lda,
     &                       iwork, workd(ipntr(2)), n, ierr)
               if ( ierr .ne. 0 ) then
                  print*, ' ' 
                  print*, ' _NBAND: Error with _bgtrs. '
                  print*, ' '
                  go to 9000
               end if
c
            else
c
c              %--------------------------------------------%
c              | Shift is COMPLEX. Perform                  |
c              | y <--- OP*x = Real_Part{inv[A-sigma*I]*x}  |
c              | to force the starting vector into the      | 
c              | range of OP.                               | 
c              %--------------------------------------------%
c
               do 100 j = 1, n
                  workc(j) = dcmplx(workd(ipntr(1)+j-1))
  100          continue
c
               call zgbtrs ('Notranspose', n, kl, ku, 1, cfac, lda,
     &                       iwork, workc, n, ierr)
               if ( ierr .ne. 0 ) then
                  print*, ' '
                  print*, ' _NBAND: Error with _gbtrs. '
                  print*, ' '
                  go to 9000
               end if
c
               do 110 j = 1, n
                  workd(ipntr(2)+j-1) = dble(workc(j))
  110          continue
c
            end if 
c 
         else if ( type .eq. 3 ) then
c
c           %-----------------------------------%
c           | Perform  y <--- OP*x = inv[M]*A*x |
c           | to force the starting vector into | 
c           | the range of OP.                  |
c           %-----------------------------------%
c
            call dgbmv('Notranspose', n, n, kl, ku, one, ab(itop,1), 
     &                  lda, workd(ipntr(1)), 1, zero, 
     &                  workd(ipntr(2)), 1)
c
            call dgbtrs ('Notranspose', n, kl, ku, 1, rfac, lda, 
     &                    iwork, workd(ipntr(2)), n, ierr)
            if (ierr .ne. 0) then
               print*, ' '
               print*, '_NBAND: Error with _bgtrs.'
               print*, ' '
               go to 9000
            end if
c
         else if ( type .eq. 4 ) then
c
c           %-----------------------------------------%
c           | Perform y <-- OP*x                      |
c           |         = Real_part{inv[A-SIGMA*M]*M}*x | 
c           | to force the starting vector into the   |
c           | range of OP.                            |
c           %-----------------------------------------%
c
            call dgbmv('Notranspose', n, n, kl, ku, one, mb(itop,1), 
     &                 lda, workd(ipntr(1)), 1, zero, 
     &                 workd(ipntr(2)), 1)
c
            if ( sigmai .eq. zero ) then
c
c              %---------------------%
c              | Shift is real, stay |
c              | in real arithmetic. |
c              %---------------------%            
c
               call dgbtrs ('Notranspose', n, kl, ku, 1, rfac, lda, 
     &                      iwork, workd(ipntr(2)), n, ierr)
               if (ierr .ne. 0) then
                  print*, ' ' 
                  print*, '_NBAND: Error with _gbtrs.'
                  print*, ' ' 
                  go to 9000
               end if
c
            else
c
c              %--------------------------%
c              | Goto complex arithmetic. |
c              %--------------------------%
c
               do 120 i = 1,n
                  workc(i) = dcmplx(workd(ipntr(2)+i-1))
  120           continue 
c
               call zgbtrs ('Notranspose', n, kl, ku, 1, cfac, lda, 
     &                      iwork, workc, n, ierr)
               if (ierr .ne. 0) then 
                  print*, ' '
                  print*, '_NBAND: Error with _gbtrs.' 
                  print*, ' '
                  go to 9000
               end if
c
               do  130 i = 1, n
                  workd(ipntr(2)+i-1) = dble(workc(i))
  130          continue 
c
            end if
c
         else if ( type .eq. 5) then
c
c           %---------------------------------------% 
c           | Perform y <-- OP*x                    |
c           |    = Imaginary_part{inv[A-SIGMA*I]}*x |
c           | to force the starting vector into the |
c           | range of OP.                          |
c           %---------------------------------------%
c
            do 140 j = 1, n
                  workc(j) = dcmplx(workd(ipntr(1)+j-1))
  140       continue
c
            call zgbtrs ('Notranspose', n, kl, ku, 1, cfac, lda,
     &                    iwork, workc, n, ierr)
            if ( ierr .ne. 0 ) then
               print*, ' '
               print*, ' _NBAND: Error with _gbtrs. '
               print*, ' '
               go to 9000
            end if
c
            do 150 j = 1, n
               workd(ipntr(2)+j-1) = dimag(workc(j))
  150       continue
c
         else if ( type .eq. 6 ) then
c
c           %----------------------------------------%
c           | Perform y <-- OP*x                     |
c           |       Imaginary_part{inv[A-SIGMA*M]*M} | 
c           | to force the starting vector into the  |
c           | range of OP.                           |
c           %----------------------------------------%
c
            call dgbmv('Notranspose', n, n, kl, ku, one, mb(itop,1), 
     &                 lda, workd(ipntr(1)), 1, zero, 
     &                 workd(ipntr(2)), 1)
c
            do 160 i = 1,n
               workc(i) = dcmplx(workd(ipntr(2)+i-1))
  160       continue 
c
            call zgbtrs ('Notranspose', n, kl, ku, 1, cfac, lda, 
     &                   iwork, workc, n, ierr)
            if (ierr .ne. 0) then 
               print*, ' '
               print*, '_NBAND: Error with _gbtrs.' 
               print*, ' '
               go to 9000
            end if
c
            do  170 i = 1, n
               workd(ipntr(2)+i-1) = dimag(workc(i))
  170       continue 
c 
         end if
c
      else if (ido .eq. 1) then
c
         if ( type .eq. 1) then
c
c           %----------------------------%
c           | Perform  y <--- OP*x = A*x |
c           %----------------------------%
c
            call dgbmv('Notranspose', n, n, kl, ku, one, ab(itop,1), 
     &                 lda, workd(ipntr(1)), 1, zero, 
     &                 workd(ipntr(2)), 1)
c
         else if ( type .eq. 2) then
c
            if ( sigmai .eq. zero) then
c
c              %----------------------------------%
c              | Shift is real.  Perform          |
c              | y <--- OP*x = inv[A-sigmar*I]*x. |
c              %----------------------------------%
c
               call dcopy (n, workd(ipntr(1)), 1, workd(ipntr(2)), 1)
               call dgbtrs ('Notranspose', n, kl, ku, 1, rfac, lda,
     &                       iwork, workd(ipntr(2)), n, ierr)
            else
c
c              %------------------------------------------%
c              | Shift is COMPLEX. Perform                |
c              | y <-- OP*x = Real_Part{inv[A-sigma*I]*x} |
c              | in COMPLEX arithmetic.                   |
c              %------------------------------------------%
c
               do 180 j = 1, n
                  workc(j) = dcmplx(workd(ipntr(1)+j-1))
  180          continue
c
               call zgbtrs ('Notranspose', n, kl, ku, 1, cfac, lda,
     &                       iwork, workc, n, ierr)
               if ( ierr .ne. 0 ) then
                  print*, ' '
                  print*, '_NBAND: Error with _gbtrs.' 
                  print*, ' '
                  go to 9000
               end if
c
               do 190 j = 1, n
                  workd(ipntr(2)+j-1) = dble(workc(j))
  190          continue
c
            end if
c
         else if ( type .eq. 3 ) then
c
c           %-----------------------------------%
c           | Perform  y <--- OP*x = inv[M]*A*x |
c           %-----------------------------------%
c
            call dgbmv('Notranspose', n, n, kl, ku, one, ab(itop,1), 
     &                  lda, workd(ipntr(1)), 1, zero, 
     &                  workd(ipntr(2)), 1)
c
            call dgbtrs ('Notranspose', n, kl, ku, 1, rfac, lda, 
     &                    iwork, workd(ipntr(2)), n, ierr)
            if (ierr .ne. 0) then
               print*, ' '
               print*, '_NBAND: Error with _bgtrs.'
               print*, ' ' 
               go to 9000
            end if
c
         else if ( type .eq. 4 ) then
c
c           %--------------------------------------%
c           | Perform  y <-- inv(A-sigma*M)*(M*x). |
c           | (M*x) has been computed and stored   |
c           | in workd(ipntr(3)).                  |           
c           %--------------------------------------%
c
            if ( sigmai .eq. zero ) then
c
c              %------------------------%
c              | Shift is real, stay in |
c              | real arithmetic.       |
c              %------------------------%
c
               call dcopy(n, workd(ipntr(3)), 1, workd(ipntr(2)), 1)
               call dgbtrs ('Notranspose', n, kl, ku, 1, rfac, lda, 
     &                       iwork, workd(ipntr(2)), n, ierr)
               if (ierr .ne. 0) then 
                  print*, ' '
                  print*, '_NBAND: Error with _gbtrs.' 
                  print*, ' '
                  go to 9000
               end if
c 
            else 
c
c              %---------------------------%
c              | Go to COMPLEX arithmetic. |
c              %---------------------------%
c
               do 200 i = 1,n
                  workc(i) = dcmplx(workd(ipntr(3)+i-1))
  200          continue 
c
               call zgbtrs ('Notranspose', n, kl, ku, 1, cfac, lda, 
     &                       iwork, workc, n, ierr)
               if (ierr .ne. 0) then 
                  print*, ' '
                  print*, '_NBAND: Error in _gbtrs.' 
                  print*, ' ' 
                  go to 9000
               end if
c
               do 210 i = 1,n
                  workd(ipntr(2)+i-1) = dble(workc(i))
  210          continue 
c
            end if
c
         else if ( type .eq. 5 ) then
c
c           %---------------------------------------% 
c           | Perform y <-- OP*x                    |
c           |    = Imaginary_part{inv[A-SIGMA*I]*x} |
c           %---------------------------------------%
c
            do 220 j = 1, n
                  workc(j) = dcmplx(workd(ipntr(1)+j-1))
  220       continue
c
            call zgbtrs ('Notranspose', n, kl, ku, 1, cfac, lda,
     &                    iwork, workc, n, ierr)
            if ( ierr .ne. 0 ) then
               print*, ' '
               print*, ' _NBAND: Error with _gbtrs. '
               print*, ' '
               go to 9000
            end if
c
            do 230 j = 1, n
               workd(ipntr(2)+j-1) = dimag(workc(j))
  230       continue
c
         else if ( type .eq. 6) then
c
c           %-----------------------------------------%
c           | Perform y <-- OP*x                      |
c           |   = Imaginary_part{inv[A-SIGMA*M]*M}*x. | 
c           %-----------------------------------------%
c
            do 240 i = 1,n
               workc(i) = dcmplx(workd(ipntr(3)+i-1))
  240       continue 
c
            call zgbtrs ('Notranspose', n, kl, ku, 1, cfac, lda, 
     &                   iwork, workc, n, ierr)
            if (ierr .ne. 0) then 
               print*, ' '
               print*, '_NBAND: Error with _gbtrs.' 
               print*, ' '
               go to 9000
            end if
c
            do  250 i = 1, n
               workd(ipntr(2)+i-1) = dimag(workc(i))
  250       continue 
c
         end if
c
      else if (ido .eq. 2) then
c
c        %--------------------%
c        | Perform y <-- M*x  |
c        | Not used when      |
c        | type = 1,2.        |
c        %--------------------%
c
          call dgbmv('Notranspose', n, n, kl, ku, one, mb(itop,1), 
     &                lda, workd(ipntr(1)), 1, zero, 
     &                workd(ipntr(2)), 1)
c
      else 
c
c        %-----------------------------------------%
c        | Either we have convergence, or there is | 
c        | error.                                  |
c        %-----------------------------------------%
c
         if ( info .lt. 0) then
c
c           %--------------------------%
c           | Error message, check the |
c           | documentation in DNAUPD  |
c           %--------------------------%
c
            print *, ' '
            print *, ' Error with _naupd info = ',info
            print *, ' Check the documentation of _naupd '
            print *, ' '
            go to 9000
c
         else 
c
            if ( info .eq. 1) then
               print *, ' '
               print *, ' Maximum number of iterations reached.'
               print *, ' '
            else if ( info .eq. 3) then
               print *, ' '
               print *, ' No shifts could be applied during implicit',
     &                  ' Arnoldi update, try increasing NCV.'
               print *, ' '
            end if
c
            if (iparam(5) .gt. 0) then
c
               call dneupd ( rvec, 'A', select, dr, di, z, ldz, 
     &                 sigmar, sigmai, workev, bmat, n, which, 
     &                 nev, tol, resid, ncv, v, ldv, iparam,
     &                 ipntr, workd, workl, lworkl, info )            
c
               if ( info .ne. 0) then
c 
c                 %------------------------------------%
c                 | Check the documentation of DNEUPD. |
c                 %------------------------------------%
c
                  print *, ' ' 
                  print *, ' Error with _neupd = ', info
                  print *, ' Check the documentation of _neupd '
                  print *, ' ' 
                  go to 9000
c
               else if ( sigmai .ne. zero ) then 
c 
                  if ( type .eq. 4 .or. type .eq. 6 ) then
c 
                     first = .true.
                     do 270 j = 1, iparam(5) 
c
c                    %----------------------------------%
c                    | Use Rayleigh Quotient to recover |
c                    | eigenvalues of the original      |
c                    | generalized eigenvalue problem.  |
c                    %----------------------------------%
c
                     if ( di(j) .eq. zero ) then
c
c                       %--------------------------------------%
c                       | Eigenvalue is real. Compute          |
c                       | d = (x'*inv[A-sigma*M]*M*x) / (x'*x) | 
c                       %--------------------------------------%
c
                        call dgbmv('Nontranspose', n, n, kl, ku, one, 
     $                     mb(itop,1), lda, z(1,j), 1, zero,
     $                     workd, 1)
                        do i = 1, n
                           workc(i) = dcmplx(workd(i))
                        end do
                        call zgbtrs ('Notranspose', n, kl, ku, 1, 
     $                        cfac, lda, iwork, workc, n, info)
                        do i = 1, n
                           workd(i) = dble(workc(i))
                           workd(i+n) = dimag(workc(i))
                        end do
                        denr = ddot(n, z(1,j), 1, workd, 1)
                        deni = ddot(n, z(1,j), 1, workd(n+1), 1)
                        numr  = dnrm2(n, z(1,j), 1)**2
                        dmdul = dlapy2(denr,deni)**2
                        if ( dmdul .ge. safmin ) then
                           dr(j) = sigmar + numr*denr / dmdul
                        else
c
c                          %---------------------%
c                          | dmdul is too small. |
c                          | Exit to avoid       |
c                          | overflow.           |
c                          %---------------------%
c
                           info = -15
                           go to 9000
                        end if
c
                     else if (first) then 
c
c                       %------------------------%
c                       | Eigenvalue is complex. |
c                       | Compute the first one  |
c                       | of the conjugate pair. |
c                       %------------------------%
c
c                       %-------------%
c                       | Compute M*x |
c                       %-------------%
c
                        call dgbmv('Nontranspose', n, n, kl, ku,
     $                      one, mb(itop,1), lda, z(1,j), 1, zero,
     $                      workd, 1)
                        call dgbmv('Nontranspose', n, n, kl, ku, 
     $                       one, mb(itop,1), lda, z(1,j+1), 1,
     $                       zero, workd(n+1), 1)
                        do i = 1, n
                           workc(i) = dcmplx(workd(i),workd(i+n))
                        end do
c
c                       %----------------------------%
c                       | Compute inv(A-sigma*M)*M*x |
c                       %----------------------------%
c
                        call zgbtrs('Notranspose',n,kl,ku,1,cfac, 
     $                     lda, iwork, workc, n, info)
c
c                       %-------------------------------%
c                       | Compute x'*inv(A-sigma*M)*M*x |
c                       %-------------------------------%
c
                        do i = 1, n
                           workd(i) = dble(workc(i))
                           workd(i+n) = dimag(workc(i))
                        end do
                        denr = ddot(n,z(1,j),1,workd,1)
                        denr = denr+ddot(n,z(1,j+1),1,workd(n+1),1)
                        deni = ddot(n,z(1,j),1,workd(n+1),1)
                        deni = deni - ddot(n,z(1,j+1),1,workd,1)
c
c                       %----------------%
c                       | Compute (x'*x) |
c                       %----------------%
c
                        numr = dlapy2( dnrm2(n, z(1,j), 1), 
     &                         dnrm2(n, z(1, j+1), 1) )**2
c
c                       %----------------------------------------%
c                       | Compute (x'x) / (x'*inv(A-sigma*M)*Mx) |
c                       %----------------------------------------%
c
                        dmdul = dlapy2(denr,deni)**2
                        if ( dmdul .ge. safmin ) then
                           dr(j) = sigmar+numr*denr / dmdul
                           di(j) = sigmai-numr*deni / dmdul
                           first = .false.
                        else
c
c                          %---------------------%
c                          | dmdul is too small. |
c                          | Exit to avoid       |
c                          | overflow.           |
c                          %---------------------%
c
                           info = -15
                           go to 9000
c
                        end if
c
                     else
c
c                       %---------------------------%
c                       | Get the second eigenvalue |
c                       | of the conjugate pair by  |
c                       | taking the conjugate of   |
c                       | previous one.             |
c                       %---------------------------%
c
                        dr(j) = dr(j-1)
                        di(j) = -di(j-1)
                        first = .true.
c
                     end if
c
  270                continue 
c
                  else if ( type .eq. 2 .or. type .eq. 5) then
c
                     first = .true.
                     do 280 j = 1, iparam(5)
c
c                    %----------------------------------%
c                    | Use Rayleigh Quotient to recover |
c                    | eigenvalues of the original      |
c                    | standard eigenvalue problem.     |
c                    %----------------------------------%
c
                     if ( di(j) .eq. zero ) then
c
c                       %-------------------------------------%
c                       | Eigenvalue is real. Compute         |
c                       | d = (x'*inv[A-sigma*I]*x) / (x'*x). |
c                       %-------------------------------------%
c
                        do i = 1, n
                           workc(i) = dcmplx(z(i,j))
                        end do
                        call zgbtrs ('Notranspose', n, kl, ku, 1, 
     $                        cfac, lda, iwork, workc, n, info)
                        do i = 1, n
                           workd(i) = dble(workc(i))
                           workd(i+n) = dimag(workc(i))
                        end do
                        denr = ddot(n,z(1,j),1,workd,1)
                        deni = ddot(n,z(1,j),1,workd(n+1),1)
                        numr  = dnrm2(n, z(1,j), 1)**2
                        dmdul = dlapy2(denr,deni)**2
                        if ( dmdul .ge. safmin ) then
                           dr(j) = sigmar + numr*denr / dmdul
                        else
c
c                          %---------------------%
c                          | dmdul is too small. |
c                          | Exit to avoid       |
c                          | overflow.           |
c                          %---------------------%
c
                           info = -15
                           go to 9000
c
                        end if
c
                     else if (first) then
c
c                       %------------------------%
c                       | Eigenvalue is complex. |
c                       | Compute the first one  |
c                       | of the conjugate pair. |
c                       %------------------------%
c
                        do i = 1, n
                           workc(i) = dcmplx( z(i,j), z(i,j+1) )
                        end do
c
c                       %---------------------------%
c                       | Compute inv[A-sigma*I]*x. |
c                       %---------------------------%
c
                        call zgbtrs('Notranspose',n,kl,ku,1,cfac,
     $                       lda, iwork, workc, n, info)
c
c                       %-----------------------------%
c                       | Compute x'*inv(A-sigma*I)*x |
c                       %-----------------------------%
c
                        do i = 1, n
                           workd(i) = dble(workc(i))
                           workd(i+n) = dimag(workc(i))
                        end do
                        denr = ddot(n,z(1,j),1,workd,1)
                        denr = denr+ddot(n,z(1,j+1),1,workd(n+1),1)
                        deni = ddot(n,z(1,j),1,workd(n+1),1)
                        deni = deni - ddot(n,z(1,j+1),1,workd,1)
c
c                       %----------------%
c                       | Compute (x'*x) |
c                       %----------------%
c
                        numr = dlapy2( dnrm2(n, z(1,j), 1),
     &                         dnrm2(n, z(1,j+1), 1))**2
c
c                       %----------------------------------------%
c                       | Compute (x'x) / (x'*inv(A-sigma*I)*x). |
c                       %----------------------------------------%
c
                        dmdul = dlapy2(denr,deni)**2
                        if (dmdul .ge. safmin) then  
                           dr(j) = sigmar+numr*denr / dmdul
                           di(j) = sigmai-numr*deni / dmdul
                           first = .false.
                        else
c
c                          %---------------------%
c                          | dmdul is too small. |
c                          | Exit to avoid       |
c                          | overflow.           |
c                          %---------------------%
c
                           info = -15
                           go to 9000
                        end if
c
                     else
c
c                       %---------------------------%
c                       | Get the second eigenvalue |
c                       | of the conjugate pair by  |
c                       | taking the conjugate of   |
c                       | previous one.             |
c                       %---------------------------%
c
                        dr(j) = dr(j-1)
                        di(j) = -di(j-1)
                        first = .true.
c
                     end if
c
  280                continue
c
                  end if
c
               end if
c
            end if
c
         end if
c
         go to 9000
c
      end if
c
c     %----------------------------------------%
c     | L O O P  B A C K to call DNAUPD again. |
c     %----------------------------------------%
c
      go to 90 
c
 9000 continue
c
      end