1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
|
c \BeginDoc
c
c \Name: znband
c
c \Description:
c This subroutine returns the converged approximations to eigenvalues
c of A*z = lambda*B*z and (optionally):
c
c (1) The corresponding approximate eigenvectors;
c
c (2) An orthonormal basis for the associated approximate
c invariant subspace;
c
c (3) Both.
c
c Matrices A and B are stored in LAPACK-style banded form.
c
c There is negligible additional cost to obtain eigenvectors. An orthonormal
c basis is always computed. There is an additional storage cost of n*nev
c if both are requested (in this case a separate array Z must be supplied).
c
c The approximate eigenvalues and eigenvectors of A*z = lambda*B*z
c are commonly called Ritz values and Ritz vectors respectively. They are
c referred to as such in the comments that follow. The computed orthonormal
c basis for the invariant subspace corresponding to these Ritz values is
c referred to as a Schur basis.
c
c znband can be called with one of the following modes:
c
c Mode 1: A*z = lambda*z.
c ===> OP = A and B = I.
c
c Mode 2: A*z = lambda*M*z, M symmetric positive definite
c ===> OP = inv[M]*A and B = M.
c
c Mode 3: A*z = lambda*M*z, M symmetric semi-definite
c ===> OP = inv[A - sigma*M]*M and B = M.
c ===> shift-and-invert mode.
c
c Choice of different modes can be specified in IPARAM(7) defined below.
c
c \Usage
c call znband
c ( RVEC, HOWMNY, SELECT, D , Z, LDZ, SIGMA, WORKEV, N, AB,
c MB, LDA, FAC, KL, KU, WHICH, BMAT, NEV, TOL, RESID, NCV,
c V, LDV, IPARAM, WORKD, WORKL, LWORKL, RWORK, IWORK, INFO )
c
c \Arguments
c RVEC LOGICAL (INPUT)
c Specifies whether a basis for the invariant subspace corresponding
c to the converged Ritz value approximations for the eigenproblem
c A*z = lambda*B*z is computed.
c
c RVEC = .FALSE. Compute Ritz values only.
c
c RVEC = .TRUE. Compute Ritz vectors or Schur vectors.
c See Remarks below.
c
c HOWMNY Character*1 (INPUT)
c Specifies the form of the invariant subspace to be computed
c corresponding to the converged Ritz values.
c = 'A': Compute NEV Ritz vectors;
c = 'P': Compute NEV Schur vectors;
c = 'S': compute some of the Ritz vectors, specified
c by the logical array SELECT.
c
c SELECT Logical array of dimension NCV. (INPUT)
c If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
c computed. To select the real Ritz vector corresponding to a
c Ritz value D(j), SELECT(j) must be set to .TRUE..
c If HOWMNY = 'A' or 'P', SELECT need not be initialized
c but it is used as internal workspace.
c
c D Complex*16 array of dimension NEV+1. (OUTPUT)
c On exit, D contains the Ritz approximations
c to the eigenvalues lambda for A*z = lambda*B*z.
c
c Z Complex*16 N by NEV array (OUTPUT)
c On exit, if RVEC = .TRUE. and HOWMNY = 'A', then the columns of
c Z represents approximate eigenvectors (Ritz vectors) corresponding
c to the NCONV=IPARAM(5) Ritz values for eigensystem
c A*z = lambda*B*z.
c
c If RVEC = .FALSE. or HOWMNY = 'P', then Z is NOT REFERENCED.
c
c NOTE: If if RVEC = .TRUE. and a Schur basis is not required,
c the array Z may be set equal to first NEV columns of the
c array V.
c
c LDZ Integer. (INPUT)
c The leading dimension of the array Z. If Ritz vectors are
c desired, then LDZ .ge. max( 1, N ) is required.
c In any case, LDZ .ge. 1 is required.
c
c SIGMA Complex*16 (INPUT)
c If IPARAM(7) = 3 then SIGMA represents the shift.
c Not referenced if IPARAM(7) = 1 or 2.
c
c WORKEV Complex*16 work array of dimension NCV. (WORKSPACE)
c
c N Integer. (INPUT)
c Dimension of the eigenproblem.
c
c AB Complex*16 array of dimension LDA by N. (INPUT)
c The matrix A in band storage, in rows KL+1 to
c 2*KL+KU+1; rows 1 to KL of the array need not be set.
c The j-th column of A is stored in the j-th column of the
c array AB as follows:
c AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
c
c MB Complex*16 array of dimension LDA by N. (INPUT)
c The matrix M in band storage, in rows KL+1 to
c 2*KL+KU+1; rows 1 to KL of the array need not be set.
c The j-th column of M is stored in the j-th column of the
c array MB as follows:
c MB(kl+ku+1+i-j,j) = M(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
c Not referenced if IPARAM(7)=1.
c
c LDA Integer. (INPUT)
c Leading dimension of AB, MB, FAC.
c
c FAC Complex*16 array of LDA by N. (WORKSPACE/OUTPUT)
c FAC is used to store the LU factors of MB when mode 2
c is invoked. It is used to store the LU factors of
c (A-sigma*M) when mode 3 is invoked.
c It is not referenced when IPARAM(7)=1.
c
c KL Integer. (INPUT)
c Max(number of subdiagonals of A, number of subdiagonals of M)
c
c KU Integer. (OUTPUT)
c Max(number of superdiagonals of A, number of superdiagonals of M)
c
c WHICH Character*2. (INPUT)
c When mode 1,2 are used, WHICH can be set to any one of
c the following.
c
c 'LM' -> want the NEV eigenvalues of largest magnitude.
c 'SM' -> want the NEV eigenvalues of smallest magnitude.
c 'LR' -> want the NEV eigenvalues of largest real part.
c 'SR' -> want the NEV eigenvalues of smallest real part.
c 'LI' -> want the NEV eigenvalues of largest imaginary part.
c 'SI' -> want the NEV eigenvalues of smallest imaginary part.
c
c When mode 3 is used, WHICH should be set to 'LM' only.
c
c BMAT Character*1. (INPUT)
c BMAT specifies the type of the matrix B that defines the
c semi-inner product for the operator OP.
c BMAT = 'I' -> standard eigenvalue problem A*x = lambda*x
c BMAT = 'G' -> generalized eigenvalue problem A*x = lambda*M*x
c NEV Integer. (INPUT)
c Number of eigenvalues of to be computed.
c
c TOL Double precision scalar. (INPUT)
c Stopping criteria: the relative accuracy of the Ritz value
c is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I))
c where ABS(RITZ(I)) is the magnitude when RITZ(I) is complex.
c DEFAULT = dlamch ('EPS') (machine precision as computed
c by the LAPACK auxilliary subroutine dlamch ).
c
c RESID Complex*16 array of length N. (INPUT/OUTPUT)
c On INPUT:
c If INFO .EQ. 0, a random initial residual vector is used.
c If INFO .NE. 0, RESID contains the initial residual vector,
c possibly from a previous run.
c On OUTPUT:
c RESID contains the final residual vector.
c
c NCV Integer. (INPUT)
c Number of columns of the matrix V. NCV must satisfy the two
c inequalities 2 <= NCV-NEV and NCV <= N.
c This will indicate how many Arnoldi vectors are generated
c at each iteration. After the startup phase in which NEV
c Arnoldi vectors are generated, the algorithm generates
c approximately NCV-NEV Arnoldi vectors at each subsequent update
c iteration. Most of the cost in generating each Arnoldi vector is
c in the matrix-vector operation OP*x.
c
c V Complex*16 array N by NCV. (OUTPUT)
c Upon OUTPUT: If RVEC = .TRUE. the first NCONV=IPARAM(5) columns
c contain approximate Schur vectors that span the
c desired invariant subspace.
c
c NOTE: If the array Z has been set equal to first NEV+1 columns
c of the array V and RVEC=.TRUE. and HOWMNY= 'A', then
c the first NCONV=IPARAM(5) columns of V will contain Ritz vectors
c of the eigensystem A*z = lambda*B*z.
c
c LDV Integer. (INPUT)
c Leading dimension of V exactly as declared in the calling
c program. LDV must be great than or equal to N.
c
c IPARAM Integer array of length 11. (INPUT/OUTPUT)
c IPARAM(1) = ISHIFT:
c The shifts selected at each iteration are used to restart
c the Arnoldi iteration in an implicit fashion.
c It is set to 1 in this subroutine. The user do not need
c to set this parameter.
c ----------------------------------------------------------
c ISHIFT = 1: exact shift with respect to the current
c Hessenberg matrix H. This is equivalent to
c restarting the iteration from the beginning
c after updating the starting vector with a linear
c combination of Ritz vectors associated with the
c "wanted" eigenvalues.
c -------------------------------------------------------------
c
c IPARAM(2) = Not referenced.
c
c IPARAM(3) = MXITER
c On INPUT: max number of Arnoldi update iterations allowed.
c On OUTPUT: actual number of Arnoldi update iterations taken.
c
c IPARAM(4) = NB: blocksize to be used in the recurrence.
c The code currently works only for NB = 1.
c
c IPARAM(5) = NCONV: number of "converged" eigenvalues.
c
c IPARAM(6) = IUPD
c Not referenced. Implicit restarting is ALWAYS used.
c
c IPARAM(7) = MODE
c On INPUT determines what type of eigenproblem is being solved.
c Must be 1,2 or 3; See under \Description of znband for the
c three modes available.
c
c WORKD Complex*16 work array of length at least 3*n. (WORKSPACE)
c
c WORKL Complex*16 work array of length LWORKL. (WORKSPACE)
c
c LWORKL Integer. (INPUT)
c LWORKL must be at least 3*NCV**2 + 5*NCV.
c
c RWORK Double precision array of length N (WORKSPACE)
c Workspace used in znaupd .
c
c IWORK Integer array of dimension at least N. (WORKSPACE)
c Used to mode 2,3. Store the pivot information in the
c factorization of M or (A-SIGMA*M).
c
c INFO Integer. (INPUT/OUTPUT)
c Error flag on output.
c = 0: Normal exit.
c = -1: N must be positive.
c = -2: NEV must be positive.
c = -3: NCV-NEV >= 2 and less than or equal to N.
c = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
c = -6: BMAT must be one of 'I' or 'G'.
c = -7: Length of private work WORKL array is not sufficient.
c = -8: Error return from LAPACK eigenvalue calculation.
c This should never happened.
c = -10: IPARAM(7) must be 1,2,3.
c = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
c = -12: HOWMNY = 'S' not yet implemented
c = -13: HOWMNY must be one of 'A' or 'P' if RVEC = .true.
c = -14: ZNAUPD did not find any eigenvalues to sufficient
c accuracy.
c
c \EndDoc
c
c------------------------------------------------------------------------
c
c\BeginLib
c
c\Routines called
c znaupd ARPACK reverse communication interface routine.
c zneupd ARPACK routine that returns Ritz values and (optionally)
c Ritz vectors.
c zgbtrf LAPACK band matrix factorization routine.
c zgbtrs LAPACK band linear system solve routine.
c zlacpy LAPACK matrix copy routine.
c zcopy Level 1 BLAS that copies one vector to another.
c dznrm2 Level 1 BLAS that computes the norm of a vector.
c zgbmv Level 2 BLAS that computes the band matrix vector product.
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
c Restarted Arnoldi Iteration", Ph.D thesis, TR95-13, Rice Univ,
c May 1995.
c
c\Author
c Richard Lehoucq
c Danny Sorensen
c Chao Yang
c Dept. of Computational &
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: nband.F SID: 2.3 DATE OF SID: 10/17/00 RELEASE: 2
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine znband (rvec, howmny, select, d , z, ldz, sigma,
& workev, n, ab, mb, lda, fac, kl, ku, which,
& bmat, nev, tol, resid, ncv, v, ldv, iparam,
& workd, workl, lworkl, rwork, iwork, info )
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
Character which*2, bmat, howmny
Logical rvec
Integer n, lda, kl, ku, nev, ncv, ldv,
& ldz, lworkl, info
Complex*16
& sigma
Double precision
& tol
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Integer iparam(*), iwork(*)
Logical select(*)
Complex*16
& d(*), resid(*), v(ldv,*), z(ldz,*),
& ab(lda,*), mb(lda,*), fac(lda,*),
& workd(*), workl(*), workev(*)
Double precision
& rwork(*)
c
c %--------------%
c | Local Arrays |
c %--------------%
c
integer ipntr(14)
c
c %---------------%
c | Local Scalars |
c %---------------%
c
integer ido, i, j, mode, ierr, itop, imid, ibot
c
c %------------%
c | Parameters |
c %------------%
c
Complex*16
& one, zero
parameter (one = (1.0D+0, 0.0D+0) ,
& zero = (0.0D+0, 0.0D+0) )
c
c %-----------------------------%
c | LAPACK & BLAS routines used |
c %-----------------------------%
c
Double precision
& dznrm2
external zcopy , zgbmv , zgbtrf , zgbtrs , dznrm2 , zlacpy
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
mode = iparam(7)
c
c %------------------------%
c | Initialize the reverse |
c | communication flag. |
c %------------------------%
c
ido = 0
c
c %----------------%
c | Exact shift is |
c | used. |
c %----------------%
c
iparam(1) = 1
c
c %-----------------------------------%
c | Both matrices A and M are stored |
c | between rows itop and ibot. Imid |
c | is the index of the row that |
c | stores the diagonal elements. |
c %-----------------------------------%
c
itop = kl + 1
imid = kl + ku + 1
ibot = 2*kl + ku + 1
c
if ( mode .eq. 2 ) then
c
c %-----------------------------------------------%
c | Copy M to fac and Call LAPACK routine zgbtrf |
c | to factor M. |
c %-----------------------------------------------%
c
call zlacpy ('A', ibot, n, mb, lda, fac, lda )
call zgbtrf (n, n, kl, ku, fac, lda, iwork, ierr)
if (ierr .ne. 0) then
print*, ' '
print*,'_band: error in _gbtrf'
print*, ' '
go to 9000
end if
c
else if ( mode .eq. 3 ) then
c
if (bmat .eq. 'I') then
c
c %-------------------------%
c | Construct (A - sigma*I) |
c %-------------------------%
c
call zlacpy ('A', ibot, n, ab, lda, fac, lda )
do 10 j = 1,n
fac(imid,j) = ab(imid,j) - sigma
10 continue
c
else
c
c %---------------------------%
c | Construct (A - sigma*M) |
c %---------------------------%
c
do 30 j = 1,n
do 20 i = itop, ibot
fac(i,j) = ab(i,j) - sigma*mb(i,j)
20 continue
30 continue
c
end if
c
c %------------------------%
c | Factor (A - sigma*M) |
c %------------------------%
c
call zgbtrf (n, n, kl, ku, fac, lda, iwork, ierr)
if ( ierr .ne. 0 ) then
print*, ' '
print*, '_band: error in _gbtrf.'
print*, ' '
go to 9000
end if
c
end if
c
c %--------------------------------------------%
c | M A I N L O O P (reverse communication) |
c %--------------------------------------------%
c
40 continue
c
call znaupd ( ido, bmat, n, which, nev, tol, resid, ncv,
& v, ldv, iparam, ipntr, workd, workl, lworkl,
& rwork,info )
c
if (ido .eq. -1) then
c
if ( mode .eq. 1) then
c
c %----------------------------%
c | Perform y <--- OP*x = A*x |
c %----------------------------%
c
call zgbmv ('Notranspose', n, n, kl, ku, one, ab(itop,1),
& lda, workd(ipntr(1)), 1, zero,
& workd(ipntr(2)), 1)
c
else if ( mode .eq. 2 ) then
c
c %-----------------------------------%
c | Perform y <--- OP*x = inv[M]*A*x |
c %-----------------------------------%
c
call zgbmv ('Notranspose', n, n, kl, ku, one, ab(itop,1),
& lda, workd(ipntr(1)), 1, zero,
& workd(ipntr(2)), 1)
c
call zgbtrs ('Notranspose', n, kl, ku, 1, fac, lda,
& iwork, workd(ipntr(2)), n, ierr)
if (ierr .ne. 0) then
print*, ' '
print*, '_band: error in sbgtrs.'
print*, ' '
go to 9000
end if
c
else if ( mode .eq. 3 ) then
c
c %-----------------------------------------%
c | Perform y <-- OP*x |
c | = inv[A-SIGMA*M]*M* x
c | to force the starting vector into the |
c | range of OP. |
c %-----------------------------------------%
c
call zgbmv ('Notranspose', n, n, kl, ku, one, mb(itop,1),
& lda, workd(ipntr(1)), 1, zero,
& workd(ipntr(2)), 1)
c
call zgbtrs ('Notranspose', n, kl, ku, 1, fac, lda,
& iwork, workd(ipntr(2)), n, ierr)
if (ierr .ne. 0) then
print*, ' '
print*, '_band: error in _gbtrs.'
print*, ' '
go to 9000
end if
c
end if
c
else if (ido .eq. 1) then
c
if ( mode .eq. 1) then
c
c %----------------------------%
c | Perform y <--- OP*x = A*x |
c %----------------------------%
c
call zgbmv ('Notranspose', n, n, kl, ku, one, ab(itop,1),
& lda, workd(ipntr(1)), 1, zero,
& workd(ipntr(2)), 1)
c
else if ( mode .eq. 2 ) then
c
c %-----------------------------------%
c | Perform y <--- OP*x = inv[M]*A*x |
c %-----------------------------------%
c
call zgbmv ('Notranspose', n, n, kl, ku, one, ab(itop,1),
& lda, workd(ipntr(1)), 1, zero,
& workd(ipntr(2)), 1)
c
call zgbtrs ('Notranspose', n, kl, ku, 1, fac, lda,
& iwork, workd(ipntr(2)), ldv, ierr)
if (ierr .ne. 0) then
print*, ' '
print*, '_band: error in sbgtrs.'
print*, ' '
go to 9000
end if
c
else if ( mode .eq. 3 ) then
c
if ( bmat .eq. 'I' ) then
c
c %----------------------------------%
c | Perform y <-- inv(A-sigma*I)*x. |
c %----------------------------------%
c
call zcopy (n, workd(ipntr(1)), 1, workd(ipntr(2)), 1)
call zgbtrs ('Notranspose', n, kl, ku, 1, fac, lda,
& iwork, workd(ipntr(2)), n, ierr)
if (ierr .ne. 0) then
print*, ' '
print*, '_band: error in _gbtrs.'
print*, ' '
go to 9000
end if
c
else
c
c %--------------------------------------%
c | Perform y <-- inv(A-sigma*M)*(M*x). |
c | (M*x) has been computed and stored |
c | in workd(ipntr(3)). |
c %--------------------------------------%
c
call zcopy (n, workd(ipntr(3)), 1, workd(ipntr(2)), 1)
call zgbtrs ('Notranspose', n, kl, ku, 1, fac, lda,
& iwork, workd(ipntr(2)), n, ierr)
if (ierr .ne. 0) then
print*, ' '
print*, '_band: error in _gbtrs.'
print*, ' '
go to 9000
end if
c
end if
c
endif
c
else if (ido .eq. 2) then
c
c %--------------------%
c | Perform y <-- M*x |
c %--------------------%
c
call zgbmv ('Notranspose', n, n, kl, ku, one, mb(itop,1),
& lda, workd(ipntr(1)), 1, zero,
& workd(ipntr(2)), 1)
c
else
c
c %-------------------------------------------%
c | Either we have convergence, or there is |
c | error. |
c %-------------------------------------------%
c
if ( info .ne. 0) then
c
c %--------------------------%
c | Error message, check the |
c | documentation in dnaupd |
c %--------------------------%
c
print *, ' '
print *, ' Error with _naupd info = ',info
print *, ' Check the documentation of _naupd '
print *, ' '
c
else
c
call zneupd (rvec, howmny , select, d, z, ldz, sigma,
& workev, bmat, n, which, nev, tol,
& resid, ncv, v, ldv, iparam, ipntr, workd,
& workl, lworkl, rwork, info)
c
if ( info .ne. 0) then
c
c %------------------------------------%
c | Check the documentation of zneupd . |
c %------------------------------------%
c
print *, ' '
print *, ' Error with _neupd = ', info
print *, ' Check the documentation of _neupd '
print *, ' '
c
endif
c
end if
c
go to 9000
c
end if
c
c %----------------------------------------%
c | L O O P B A C K to call znaupd again. |
c %----------------------------------------%
c
go to 40
c
9000 continue
c
end
|