File: dsbdr4.f

package info (click to toggle)
arpack 2.1-8
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k, sarge
  • size: 12,156 kB
  • ctags: 14,653
  • sloc: fortran: 49,617; makefile: 465; ansic: 39; sh: 10
file content (289 lines) | stat: -rw-r--r-- 10,010 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
      program dsbdr4 
c
c     ... Construct the matrix A in LAPACK-style band form.
c         The matrix A is the 1-dimensional discrete Laplacian on [0,1]
c         with zero Dirichlet boundary condition, M is the mass
c         formed by using piecewise linear elements on [0,1].
c
c     ... Call DSBAND  with shift-invert mode to find eigenvalues LAMBDA 
c         closest to SIGMA such that
c                          A*x = LAMBDA*M*x.
c
c     ... Use mode 3 of DSAUPD .
c
c\BeginLib
c
c\Routines called:
c     dsband   ARPACK banded eigenproblem solver.
c     dlapy2   LAPACK routine to compute sqrt(x**2+y**2) carefully.
c     dlaset   LAPACK routine to initialize a matrix to zero.
c     daxpy    Level 1 BLAS that computes y <- alpha*x+y.
c     dnrm2    Level 1 BLAS that computes the norm of a vector.
c     dgbmv    Level 2 BLAS that computes the band matrix vector product
c
c\Author
c     Richard Lehoucq
c     Danny Sorensen
c     Chao Yang
c     Dept. of Computational &
c     Applied Mathematics
c     Rice University
c     Houston, Texas
c
c\SCCS Information: @(#)
c FILE: sbdr4.F   SID: 2.5   DATE OF SID: 08/26/96   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c
c----------------------------------------------------------------------
c
c     %-------------------------------------%
c     | Define leading dimensions for all   |
c     | arrays.                             |
c     | MAXN   - Maximum size of the matrix |
c     | MAXNEV - Maximum number of          |
c     |          eigenvalues to be computed |
c     | MAXNCV - Maximum number of Arnoldi  |
c     |          vectors stored             | 
c     | MAXBDW - Maximum bandwidth          |
c     %-------------------------------------%
c
      integer          maxn, maxnev, maxncv, maxbdw, lda,
     &                 lworkl, ldv
      parameter        ( maxn = 1000, maxnev = 25, maxncv=50, 
     &                   maxbdw=50, lda = maxbdw, ldv = maxn )
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
      integer          iparam(11), iwork(maxn)
      logical          select(maxncv)
      Double precision 
     &                 a(lda,maxn), m(lda,maxn), rfac(lda,maxn),
     &                 workl(maxncv*maxncv+8*maxncv), workd(3*maxn), 
     &                 v(ldv, maxncv), resid(maxn), d(maxncv, 2),
     &                 ax(maxn), mx(maxn)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      character        which*2, bmat
      integer          nev, ncv, ku, kl, info, j, ido,
     &                 n, isub, isup, idiag, maxitr, mode, nconv
      Double precision  
     &                 tol, h, sigma, r1, r2
      logical          rvec
c 
c     %------------%
c     | Parameters |
c     %------------%
c
      Double precision  
     &                 one, zero, two, four, six
      parameter        (one = 1.0D+0 , zero = 0.0D+0 , two = 2.0D+0 ,
     &                  four = 4.0D+0 , six = 6.0D+0 )
c
c     %-----------------------------%
c     | BLAS & LAPACK routines used |
c     %-----------------------------%
c
      Double precision 
     &                  dlapy2 , dnrm2 
      external          dlapy2 , dnrm2 , daxpy , dgbmv  
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c
c     %--------------------------------------------------%
c     | The number N is the dimension of the matrix.  A  |
c     | generalized eigenvalue problem is solved         |
c     | (BMAT = 'G').  NEV is the number of eigenvalues  |
c     | (closest to the shift SIGMA) to be approximated. |
c     | Since the shift and invert mode is used, WHICH   |
c     | is set to 'LM'.  The user can modify N, NEV, NCV |
c     | and SIGMA to solve problems of different sizes,  |
c     | and to get different parts the spectrum.         |
c     | However, the following conditions must be        |
c     | satisfied:                                       |
c     |                   N <= MAXN                      |
c     |                 NEV <= MAXNEV                    |
c     |           NEV + 1 <= NCV <= MAXNCV               | 
c     %--------------------------------------------------% 
c
      n    = 100
      nev  = 4 
      ncv  = 10 
      if ( n .gt. maxn ) then
         print *, ' ERROR with _SBDR4: N is greater than MAXN '
         go to 9000
      else if ( nev .gt. maxnev ) then
         print *, ' ERROR with _SBDR4: NEV is greater than MAXNEV '
         go to 9000
      else if ( ncv .gt. maxncv ) then
         print *, ' ERROR with _SBDR4: NCV is greater than MAXNCV '
         go to 9000
      end if
      bmat = 'G'
      which = 'LM'
      sigma = zero
c
c     %-----------------------------------------------------%
c     | The work array WORKL is used in DSAUPD  as           |
c     | workspace.  Its dimension LWORKL is set as          |
c     | illustrated below.  The parameter TOL determines    |
c     | the stopping criterion. If TOL<=0, machine          |
c     | precision is used.  The variable IDO is used for    |
c     | reverse communication, and is initially set to 0.   |
c     | Setting INFO=0 indicates that a random vector is    |
c     | generated in DSAUPD  to start the Arnoldi iteration. |
c     %-----------------------------------------------------%
c
      lworkl  = ncv**2+8*ncv
      tol  = zero 
      ido  = 0
      info = 0
c
c     %---------------------------------------------------%
c     | IPARAM(3) specifies the maximum number of Arnoldi |
c     | iterations allowed.  Mode 3 of DSAUPD  is used     |
c     | (IPARAM(7) = 3). All these options can be changed |
c     | by the user. For details, see the documentation   |
c     | in DSBAND .                                        |
c     %---------------------------------------------------%
c
      maxitr = 300
      mode   = 3
c
      iparam(3) = maxitr
      iparam(7) = mode
c
c     %----------------------------------------%
c     | Construct the matrix A in LAPACK-style |
c     | banded form.                           |
c     %----------------------------------------%
c
c     %---------------------------------------------%
c     | Zero out the workspace for banded matrices. |
c     %---------------------------------------------%
c
      call dlaset ('A', lda, n, zero, zero, a, lda)
      call dlaset ('A', lda, n, zero, zero, m, lda)
      call dlaset ('A', lda, n, zero, zero, rfac, lda)
c
c     %-------------------------------------%
c     | KU, KL are number of superdiagonals |
c     | and subdiagonals within the band of |
c     | matrices A and M.                   |
c     %-------------------------------------%
c
      kl   = 1 
      ku   = 1 
c
c     %---------------% 
c     | Main diagonal |
c     %---------------%
c
      h = one / dble (n+1)
      r1 = four / six
      idiag = kl+ku+1
      do 30 j = 1, n
         a(idiag,j) = two / h
         m(idiag,j) = r1 * h
  30  continue 
c 
c     %-------------------------------------%
c     | First subdiagonal and superdiagonal |
c     %-------------------------------------%
c 
      r2 = one / six
      isup = kl+ku
      isub = kl+ku+2
      do 60 j = 1, n-1
         a(isup,j+1) = -one / h
         a(isub,j) = -one / h
         m(isup,j+1) = r2 * h 
         m(isub,j) = r2 * h
  60  continue
c
c     %-------------------------------------%
c     | Call DSBAND  to find eigenvalues and |
c     | eigenvectors.  Eigenvalues are      |
c     | returned in the first column of D.  |
c     | Eigenvectors are returned in the    |
c     | first NCONV (=IPARAM(5)) columns of |
c     | V.                                  |
c     %-------------------------------------%
c
      rvec = .true.
      call dsband ( rvec, 'A', select, d, v, ldv, sigma, n, a, m, 
     &             lda, rfac, kl, ku, which, bmat, nev, tol, 
     &             resid, ncv, v, ldv, iparam, workd, workl, lworkl, 
     &             iwork, info)
c
      if ( info .eq. 0) then
c
         nconv = iparam(5)
c
c        %-----------------------------------%
c        | Print out convergence information |
c        %-----------------------------------%
c
         print *, ' '
         print *, ' _SBDR4 '
         print *, ' ====== '
         print *, ' '
         print *, ' The size of the matrix is ', n
         print *, ' Number of eigenvalue requested is ', nev
         print *, ' The number of Lanczos vectors generated',
     &            ' (NCV) is ', ncv
         print *, ' The number of converged Ritz values is ',
     &              nconv 
         print *, ' What portion of the spectrum ', which
         print *, ' The number of Implicit Arnoldi',
     &              ' update taken is ', iparam(3)
         print *, ' The number of OP*x is ', iparam(9)
         print *, ' The convergence tolerance is ', tol
         print *, ' '
c
c        %----------------------------%
c        | Compute the residual norm. |
c        |    ||  A*x - lambda*x ||   |
c        %----------------------------%
c
         do 90 j = 1, nconv
            call dgbmv ('Notranspose', n, n, kl, ku, one, 
     &                 a(kl+1,1), lda, v(1,j), 1, zero, 
     &                 ax, 1)
            call dgbmv ('Notranspose', n, n, kl, ku, one, 
     &                 m(kl+1,1), lda, v(1,j), 1, zero, 
     &                 mx, 1)
            call daxpy (n, -d(j,1), mx, 1, ax, 1)
            d(j,2) = dnrm2 (n, ax, 1)
            d(j,2) = d(j,2) / abs(d(j,1))
c
 90      continue 

         call dmout (6, nconv, 2, d, maxncv, -6,
     &             'Ritz values and relative residuals')
      else 
c
c        %-------------------------------------%
c        | Either convergence failed, or there |
c        | is error.  Check the documentation  |
c        | for DSBAND .                         |
c        %-------------------------------------%
c
          print *, ' '
          print *, ' Error with _sband, info= ', info
          print *, ' Check the documentation of _sband '
          print *, ' ' 
c
      end if
c
 9000 end