1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
program dsbdr4
c
c ... Construct the matrix A in LAPACK-style band form.
c The matrix A is the 1-dimensional discrete Laplacian on [0,1]
c with zero Dirichlet boundary condition, M is the mass
c formed by using piecewise linear elements on [0,1].
c
c ... Call DSBAND with shift-invert mode to find eigenvalues LAMBDA
c closest to SIGMA such that
c A*x = LAMBDA*M*x.
c
c ... Use mode 3 of DSAUPD .
c
c\BeginLib
c
c\Routines called:
c dsband ARPACK banded eigenproblem solver.
c dlapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c dlaset LAPACK routine to initialize a matrix to zero.
c daxpy Level 1 BLAS that computes y <- alpha*x+y.
c dnrm2 Level 1 BLAS that computes the norm of a vector.
c dgbmv Level 2 BLAS that computes the band matrix vector product
c
c\Author
c Richard Lehoucq
c Danny Sorensen
c Chao Yang
c Dept. of Computational &
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: sbdr4.F SID: 2.5 DATE OF SID: 08/26/96 RELEASE: 2
c
c\Remarks
c 1. None
c
c\EndLib
c
c----------------------------------------------------------------------
c
c %-------------------------------------%
c | Define leading dimensions for all |
c | arrays. |
c | MAXN - Maximum size of the matrix |
c | MAXNEV - Maximum number of |
c | eigenvalues to be computed |
c | MAXNCV - Maximum number of Arnoldi |
c | vectors stored |
c | MAXBDW - Maximum bandwidth |
c %-------------------------------------%
c
integer maxn, maxnev, maxncv, maxbdw, lda,
& lworkl, ldv
parameter ( maxn = 1000, maxnev = 25, maxncv=50,
& maxbdw=50, lda = maxbdw, ldv = maxn )
c
c %--------------%
c | Local Arrays |
c %--------------%
c
integer iparam(11), iwork(maxn)
logical select(maxncv)
Double precision
& a(lda,maxn), m(lda,maxn), rfac(lda,maxn),
& workl(maxncv*maxncv+8*maxncv), workd(3*maxn),
& v(ldv, maxncv), resid(maxn), d(maxncv, 2),
& ax(maxn), mx(maxn)
c
c %---------------%
c | Local Scalars |
c %---------------%
c
character which*2, bmat
integer nev, ncv, ku, kl, info, j, ido,
& n, isub, isup, idiag, maxitr, mode, nconv
Double precision
& tol, h, sigma, r1, r2
logical rvec
c
c %------------%
c | Parameters |
c %------------%
c
Double precision
& one, zero, two, four, six
parameter (one = 1.0D+0 , zero = 0.0D+0 , two = 2.0D+0 ,
& four = 4.0D+0 , six = 6.0D+0 )
c
c %-----------------------------%
c | BLAS & LAPACK routines used |
c %-----------------------------%
c
Double precision
& dlapy2 , dnrm2
external dlapy2 , dnrm2 , daxpy , dgbmv
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
c %--------------------------------------------------%
c | The number N is the dimension of the matrix. A |
c | generalized eigenvalue problem is solved |
c | (BMAT = 'G'). NEV is the number of eigenvalues |
c | (closest to the shift SIGMA) to be approximated. |
c | Since the shift and invert mode is used, WHICH |
c | is set to 'LM'. The user can modify N, NEV, NCV |
c | and SIGMA to solve problems of different sizes, |
c | and to get different parts the spectrum. |
c | However, the following conditions must be |
c | satisfied: |
c | N <= MAXN |
c | NEV <= MAXNEV |
c | NEV + 1 <= NCV <= MAXNCV |
c %--------------------------------------------------%
c
n = 100
nev = 4
ncv = 10
if ( n .gt. maxn ) then
print *, ' ERROR with _SBDR4: N is greater than MAXN '
go to 9000
else if ( nev .gt. maxnev ) then
print *, ' ERROR with _SBDR4: NEV is greater than MAXNEV '
go to 9000
else if ( ncv .gt. maxncv ) then
print *, ' ERROR with _SBDR4: NCV is greater than MAXNCV '
go to 9000
end if
bmat = 'G'
which = 'LM'
sigma = zero
c
c %-----------------------------------------------------%
c | The work array WORKL is used in DSAUPD as |
c | workspace. Its dimension LWORKL is set as |
c | illustrated below. The parameter TOL determines |
c | the stopping criterion. If TOL<=0, machine |
c | precision is used. The variable IDO is used for |
c | reverse communication, and is initially set to 0. |
c | Setting INFO=0 indicates that a random vector is |
c | generated in DSAUPD to start the Arnoldi iteration. |
c %-----------------------------------------------------%
c
lworkl = ncv**2+8*ncv
tol = zero
ido = 0
info = 0
c
c %---------------------------------------------------%
c | IPARAM(3) specifies the maximum number of Arnoldi |
c | iterations allowed. Mode 3 of DSAUPD is used |
c | (IPARAM(7) = 3). All these options can be changed |
c | by the user. For details, see the documentation |
c | in DSBAND . |
c %---------------------------------------------------%
c
maxitr = 300
mode = 3
c
iparam(3) = maxitr
iparam(7) = mode
c
c %----------------------------------------%
c | Construct the matrix A in LAPACK-style |
c | banded form. |
c %----------------------------------------%
c
c %---------------------------------------------%
c | Zero out the workspace for banded matrices. |
c %---------------------------------------------%
c
call dlaset ('A', lda, n, zero, zero, a, lda)
call dlaset ('A', lda, n, zero, zero, m, lda)
call dlaset ('A', lda, n, zero, zero, rfac, lda)
c
c %-------------------------------------%
c | KU, KL are number of superdiagonals |
c | and subdiagonals within the band of |
c | matrices A and M. |
c %-------------------------------------%
c
kl = 1
ku = 1
c
c %---------------%
c | Main diagonal |
c %---------------%
c
h = one / dble (n+1)
r1 = four / six
idiag = kl+ku+1
do 30 j = 1, n
a(idiag,j) = two / h
m(idiag,j) = r1 * h
30 continue
c
c %-------------------------------------%
c | First subdiagonal and superdiagonal |
c %-------------------------------------%
c
r2 = one / six
isup = kl+ku
isub = kl+ku+2
do 60 j = 1, n-1
a(isup,j+1) = -one / h
a(isub,j) = -one / h
m(isup,j+1) = r2 * h
m(isub,j) = r2 * h
60 continue
c
c %-------------------------------------%
c | Call DSBAND to find eigenvalues and |
c | eigenvectors. Eigenvalues are |
c | returned in the first column of D. |
c | Eigenvectors are returned in the |
c | first NCONV (=IPARAM(5)) columns of |
c | V. |
c %-------------------------------------%
c
rvec = .true.
call dsband ( rvec, 'A', select, d, v, ldv, sigma, n, a, m,
& lda, rfac, kl, ku, which, bmat, nev, tol,
& resid, ncv, v, ldv, iparam, workd, workl, lworkl,
& iwork, info)
c
if ( info .eq. 0) then
c
nconv = iparam(5)
c
c %-----------------------------------%
c | Print out convergence information |
c %-----------------------------------%
c
print *, ' '
print *, ' _SBDR4 '
print *, ' ====== '
print *, ' '
print *, ' The size of the matrix is ', n
print *, ' Number of eigenvalue requested is ', nev
print *, ' The number of Lanczos vectors generated',
& ' (NCV) is ', ncv
print *, ' The number of converged Ritz values is ',
& nconv
print *, ' What portion of the spectrum ', which
print *, ' The number of Implicit Arnoldi',
& ' update taken is ', iparam(3)
print *, ' The number of OP*x is ', iparam(9)
print *, ' The convergence tolerance is ', tol
print *, ' '
c
c %----------------------------%
c | Compute the residual norm. |
c | || A*x - lambda*x || |
c %----------------------------%
c
do 90 j = 1, nconv
call dgbmv ('Notranspose', n, n, kl, ku, one,
& a(kl+1,1), lda, v(1,j), 1, zero,
& ax, 1)
call dgbmv ('Notranspose', n, n, kl, ku, one,
& m(kl+1,1), lda, v(1,j), 1, zero,
& mx, 1)
call daxpy (n, -d(j,1), mx, 1, ax, 1)
d(j,2) = dnrm2 (n, ax, 1)
d(j,2) = d(j,2) / abs(d(j,1))
c
90 continue
call dmout (6, nconv, 2, d, maxncv, -6,
& 'Ritz values and relative residuals')
else
c
c %-------------------------------------%
c | Either convergence failed, or there |
c | is error. Check the documentation |
c | for DSBAND . |
c %-------------------------------------%
c
print *, ' '
print *, ' Error with _sband, info= ', info
print *, ' Check the documentation of _sband '
print *, ' '
c
end if
c
9000 end
|