1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
program snbdr3
c
c ... Construct matrices A and M in LAPACK-style band form.
c The matrix A and M are derived from the finite element
c discretization of the 1-dimensional convection-diffusion operator
c (d^2u/dx^2) + rho*(du/dx)
c on the interval [0,1] with zero boundary condition,
c ... Call SNBAND to find eigenvalues LAMBDA such that
c A*x = LAMBDA*M*x.
c
c ... Eigenvalues with largest real parts are sought.
c
c ... Use mode 2 of SNAUPD.
c
c\BeginLib
c
c\Routines called:
c snband ARPACK banded eigenproblem solver.
c slapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c slaset LAPACK routine to initialize a matrix to zero.
c saxpy Level 1 BLAS that computes y <- alpha*x+y.
c snrm2 Level 1 BLAS that computes the norm of a vector.
c sgbmv Level 2 BLAS that computes the band matrix vector product.
c
c\Author
c Richard Lehoucq
c Danny Sorensen
c Chao Yang
c Dept. of Computational &
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: nbdr3.F SID: 2.5 DATE OF SID: 08/26/96 RELEASE: 2
c
c\Remarks
c 1. None
c
c\EndLib
c
c-------------------------------------------------------------------------
c
c %-------------------------------------%
c | Define leading dimensions for all |
c | arrays. |
c | MAXN - Maximum size of the matrix |
c | MAXNEV - Maximum number of |
c | eigenvalues to be computed |
c | MAXNCV - Maximum number of Arnoldi |
c | vectors stored |
c | MAXBDW - Maximum bandwidth |
c %-------------------------------------%
c
integer maxn, maxnev, maxncv, maxbdw, lda,
& lworkl, ldv
parameter ( maxn = 1000, maxnev = 25, maxncv=50,
& maxbdw=50, lda = maxbdw, ldv = maxn)
c
c %--------------%
c | Local Arrays |
c %--------------%
c
integer iparam(11), iwork(maxn)
logical select(maxncv)
Real
& a(lda,maxn), m(lda,maxn), rfac(lda,maxn),
& workl(3*maxncv*maxncv+6*maxncv), workd(3*maxn),
& workev(3*maxncv), v(ldv, maxncv),
& resid(maxn), d(maxncv, 3), ax(maxn), mx(maxn)
Complex
& cfac(lda, maxn), workc(maxn)
c
c %---------------%
c | Local Scalars |
c %---------------%
c
character which*2, bmat
integer nev, ncv, ku, kl, info, j, ido,
& n, idiag, isup, isub, mode, maxitr,
& nconv
logical rvec, first
Real
& tol, rho, h, sigmar, sigmai
c
c %------------%
c | Parameters |
c %------------%
c
Real
& one, zero, two
parameter (one = 1.0E+0 , zero = 0.0E+0 ,
& two = 2.0E+0 )
c
c %-----------------------------%
c | BLAS & LAPACK routines used |
c %-----------------------------%
c
Real
& slapy2, snrm2
external slapy2, snrm2, sgbmv, saxpy
c
c %--------------------%
c | Intrinsic function |
c %--------------------%
c
intrinsic abs
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
c %-------------------------------------------------%
c | The number N is the dimension of the matrix. A |
c | generalized eigenvalue problem is solved |
c | (BMAT = 'G'). NEV is the number of eigenvalues |
c | to be approximated. The user can modify N, NEV, |
c | NCV and WHICH to solve problems of different |
c | sizes, and to get different parts the spectrum. |
c | However, the following conditions must be |
c | satisfied: |
c | N <= MAXN |
c | NEV <= MAXNEV |
c | NEV + 2 <= NCV <= MAXNCV |
c %-------------------------------------------------%
c
n = 100
nev = 4
ncv = 10
if ( n .gt. maxn ) then
print *, ' ERROR with _NBDR3: N is greater than MAXN '
go to 9000
else if ( nev .gt. maxnev ) then
print *, ' ERROR with _NBDR3: NEV is greater than MAXNEV '
go to 9000
else if ( ncv .gt. maxncv ) then
print *, ' ERROR with _NBDR3: NCV is greater than MAXNCV '
go to 9000
end if
bmat = 'G'
which = 'LM'
c
c %----------------------------------------------------%
c | The work array WORKL is used in SNAUPD as |
c | workspace. Its dimension LWORKL has to be set as |
c | illustrated below. The parameter TOL determines |
c | the stopping criterion. If TOL<=0, machine machine |
c | precision is used. The number IDO is used for |
c | reverse communication and has to be set to 0 at |
c | the beginning. Setting INFO=0 indicates that we |
c | using a randomly generated vector to start the |
c | the ARNOLDI process. |
c %----------------------------------------------------%
c
lworkl = 3*ncv**2+6*ncv
info = 0
tol = zero
ido = 0
c
c %---------------------------------------------------%
c | IPARAM(3) specifies the maximum number of Arnoldi |
c | iterations allowed. Mode 2 of SNAUPD is used |
c | (IPARAM(7) = 2). All these options can be changed |
c | by the user. For details, see the documentation |
c | in SNBAND. |
c %---------------------------------------------------%
c
mode = 2
maxitr = 300
c
iparam(3) = maxitr
iparam(7) = mode
c
c %--------------------------------------------%
c | Construct matrices A and M in LAPACK-style |
c | banded form. |
c %--------------------------------------------%
c
c %---------------------------------------------%
c | Zero out the workspace for banded matrices. |
c %---------------------------------------------%
c
call slaset('A', lda, n, zero, zero, a, lda)
call slaset('A', lda, n, zero, zero, m, lda)
call slaset('A', lda, n, zero, zero, rfac, lda)
c
c %-------------------------------------%
c | KU, KL are number of superdiagonals |
c | and subdiagonals within the band of |
c | matrices A and M. |
c %-------------------------------------%
c
kl = 1
ku = 1
c
c %---------------%
c | Main diagonal |
c %---------------%
c
h = one / real (n+1)
c
idiag = kl+ku+1
do 30 j = 1, n
a(idiag,j) = 2.0E+0 / h
m(idiag,j) = 4.0E+0 * h
30 continue
c
c %-------------------------------------%
c | First subdiagonal and superdiagonal |
c %-------------------------------------%
c
isup = kl+ku
isub = kl+ku+2
rho = 1.0E+1
do 50 j = 1, n
a(isup,j+1) = -one/h + rho/two
a(isub,j) = -one/h - rho/two
m(isup,j+1) = one*h
m(isub,j) = one*h
50 continue
c
c %------------------------------------------------%
c | Call ARPACK banded solver to find eigenvalues |
c | and eigenvectors. The real parts of the |
c | eigenvalues are returned in the first column |
c | of D, the imaginary parts are returned in the |
c | second column of D. Eigenvectors are returned |
c | in the first NCONV (=IPARAM(5)) columns of V. |
c %------------------------------------------------%
c
rvec = .true.
call snband( rvec, 'A', select, d, d(1,2), v, ldv, sigmar,
& sigmai, workev, n, A, M, lda, rfac, cfac, kl, ku,
& which, bmat, nev, tol, resid, ncv, v, ldv, iparam,
& workd, workl, lworkl, workc, iwork, info)
c
if ( info .eq. 0) then
c
c %-----------------------------------%
c | Print out convergence information |
c %-----------------------------------%
c
nconv = iparam(5)
c
print *, ' '
print *, ' _NBDR3 '
print *, ' ====== '
print *, ' '
print *, ' The size of the matrix is ', n
print *, ' Number of eigenvalue requested is ', nev
print *, ' The number of Arnoldi vectors generated',
& ' (NCV) is ', ncv
print *, ' The number of converged Ritz values is ',
& nconv
print *, ' What portion of the spectrum ', which
print *, ' The number of Implicit Arnoldi ',
& ' update taken is ', iparam(3)
print *, ' The number of OP*x is ', iparam(9)
print *, ' The convergence tolerance is ', tol
print *, ' '
c
c %----------------------------%
c | Compute the residual norm. |
c | || A*x - lambda*x || |
c %----------------------------%
c
first = .true.
do 90 j = 1, nconv
c
if ( d(j,2) .eq. zero ) then
c
c %--------------------%
c | Ritz value is real |
c %--------------------%
c
call sgbmv('Notranspose', n, n, kl, ku, one,
& a(kl+1,1), lda, v(1,j), 1, zero,
& ax, 1)
call sgbmv('Notranspose', n, n, kl, ku, one,
& m(kl+1,1), lda, v(1,j), 1, zero,
& mx, 1)
call saxpy(n, -d(j,1), mx, 1, ax, 1)
d(j,3) = snrm2(n, ax, 1)
d(j,3) = d(j,3) / abs(d(j,1))
c
else if ( first ) then
c
c %------------------------%
c | Ritz value is complex |
c | Residual of one Ritz |
c | value of the conjugate |
c | pair is computed. |
c %------------------------%
c
call sgbmv('Notranspose', n, n, kl, ku, one,
& a(kl+1,1), lda, v(1,j), 1, zero,
& ax, 1)
call sgbmv('Notranspose', n, n, kl, ku, one,
& m(kl+1,1), lda, v(1,j), 1, zero,
& mx, 1)
call saxpy(n, -d(j,1), mx, 1, ax, 1)
call sgbmv('Notranspose', n, n, kl, ku, one,
& m(kl+1,1), lda, v(1,j+1), 1, zero,
& mx, 1)
call saxpy(n, d(j,2), mx, 1, ax, 1)
d(j,3) = snrm2(n, ax, 1)
call sgbmv('Notranspose', n, n, kl, ku, one,
& a(kl+1,1), lda, v(1,j+1), 1, zero,
& ax, 1)
call sgbmv('Notranspose', n, n, kl, ku, one,
& m(kl+1,1), lda, v(1,j+1), 1, zero,
& mx, 1)
call saxpy(n, -d(j,1), mx, 1, ax, 1)
call sgbmv('Notranspose', n, n, kl, ku, one,
& m(kl+1,1), lda, v(1,j), 1, zero,
& mx, 1)
call saxpy(n, -d(j,2), mx, 1, ax, 1)
d(j,3) = slapy2( d(j,3), snrm2(n, ax, 1) )
d(j,3) = d(j,3) / slapy2(d(j,1),d(j,2))
d(j+1,3) = d(j,3)
first = .false.
else
first = .true.
end if
c
90 continue
call smout(6, nconv, 3, d, maxncv, -6,
& 'Ritz values (Real,Imag) and relative residuals')
else
c
c %-------------------------------------%
c | Either convergence failed, or there |
c | is error. Check the documentation |
c | for SNBAND. |
c %-------------------------------------%
c
print *, ' '
print *, ' Error with _nband, info= ', info
print *, ' Check the documentation of _nband '
print *, ' '
c
end if
c
9000 end
|