File: snbdr3.f

package info (click to toggle)
arpack 2.1-8
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k, sarge
  • size: 12,156 kB
  • ctags: 14,653
  • sloc: fortran: 49,617; makefile: 465; ansic: 39; sh: 10
file content (346 lines) | stat: -rw-r--r-- 12,162 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
      program snbdr3
c
c     ... Construct matrices A and M in LAPACK-style band form.
c         The matrix A and M are derived from the finite element
c         discretization of the 1-dimensional convection-diffusion operator 
c                         (d^2u/dx^2) + rho*(du/dx)
c         on the interval [0,1] with zero boundary condition,

c     ... Call SNBAND to find eigenvalues LAMBDA such that
c                    A*x = LAMBDA*M*x.
c
c     ... Eigenvalues with largest real parts are sought.
c
c     ... Use mode 2 of SNAUPD.
c
c\BeginLib
c
c\Routines called:
c     snband  ARPACK banded eigenproblem solver.
c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
c     slaset  LAPACK routine to initialize a matrix to zero.
c     saxpy   Level 1 BLAS that computes y <- alpha*x+y.
c     snrm2   Level 1 BLAS that computes the norm of a vector.
c     sgbmv   Level 2 BLAS that computes the band matrix vector product.
c
c\Author
c     Richard Lehoucq
c     Danny Sorensen
c     Chao Yang
c     Dept. of Computational &
c     Applied Mathematics
c     Rice University
c     Houston, Texas
c
c\SCCS Information: @(#)
c FILE: nbdr3.F   SID: 2.5   DATE OF SID: 08/26/96   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c
c-------------------------------------------------------------------------
c
c     %-------------------------------------%
c     | Define leading dimensions for all   |
c     | arrays.                             |
c     | MAXN   - Maximum size of the matrix |
c     | MAXNEV - Maximum number of          |
c     |          eigenvalues to be computed |
c     | MAXNCV - Maximum number of Arnoldi  |
c     |          vectors stored             | 
c     | MAXBDW - Maximum bandwidth          |
c     %-------------------------------------%
c
      integer          maxn, maxnev, maxncv, maxbdw, lda,
     &                 lworkl, ldv
      parameter        ( maxn = 1000, maxnev = 25, maxncv=50, 
     &                   maxbdw=50, lda = maxbdw, ldv = maxn)
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
      integer          iparam(11), iwork(maxn)
      logical          select(maxncv)
      Real 
     &                 a(lda,maxn), m(lda,maxn), rfac(lda,maxn),
     &                 workl(3*maxncv*maxncv+6*maxncv), workd(3*maxn), 
     &                 workev(3*maxncv), v(ldv, maxncv),
     &                 resid(maxn), d(maxncv, 3), ax(maxn), mx(maxn)
      Complex  
     &                 cfac(lda, maxn), workc(maxn)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      character        which*2, bmat
      integer          nev, ncv, ku, kl, info, j, ido,
     &                 n, idiag, isup, isub, mode, maxitr,
     &                 nconv
      logical          rvec, first
      Real  
     &                 tol, rho, h, sigmar, sigmai
c 
c     %------------%
c     | Parameters |
c     %------------%
c
      Real  
     &                 one, zero, two
      parameter        (one = 1.0E+0 , zero = 0.0E+0 , 
     &                  two = 2.0E+0 )
c
c     %-----------------------------%
c     | BLAS & LAPACK routines used |
c     %-----------------------------%
c
      Real 
     &                  slapy2, snrm2
      external          slapy2, snrm2, sgbmv, saxpy 
c
c     %--------------------%
c     | Intrinsic function |
c     %--------------------%
c
      intrinsic         abs
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c
c     %-------------------------------------------------%
c     | The number N is the dimension of the matrix.  A |
c     | generalized eigenvalue problem is solved        |
c     | (BMAT = 'G').  NEV is the number of eigenvalues |
c     | to be approximated. The user can modify N, NEV, |
c     | NCV and WHICH to solve problems of different    |
c     | sizes, and to get different parts the spectrum. |
c     | However, the following conditions must be       |
c     | satisfied:                                      |
c     |                   N <= MAXN                     |
c     |                 NEV <= MAXNEV                   |
c     |           NEV + 2 <= NCV <= MAXNCV              |
c     %-------------------------------------------------%
c
      n    = 100
      nev  = 4 
      ncv  = 10 
      if ( n .gt. maxn ) then
         print *, ' ERROR with _NBDR3: N is greater than MAXN '
         go to 9000
      else if ( nev .gt. maxnev ) then
         print *, ' ERROR with _NBDR3: NEV is greater than MAXNEV '
         go to 9000
      else if ( ncv .gt. maxncv ) then
         print *, ' ERROR with _NBDR3: NCV is greater than MAXNCV '
         go to 9000
      end if
      bmat = 'G'
      which = 'LM'
c
c     %----------------------------------------------------%
c     | The work array WORKL is used in SNAUPD as          | 
c     | workspace.  Its dimension LWORKL has to be set as  |
c     | illustrated below.  The parameter TOL determines   |
c     | the stopping criterion. If TOL<=0, machine machine |
c     | precision is used.  The number IDO is used for     |
c     | reverse communication and has to be set to 0 at    |
c     | the beginning.  Setting INFO=0 indicates that we   |
c     | using a randomly generated vector to start the     |
c     | the ARNOLDI process.                               | 
c     %----------------------------------------------------%
c
      lworkl  = 3*ncv**2+6*ncv
      info = 0
      tol  = zero 
      ido  = 0
c
c     %---------------------------------------------------%
c     | IPARAM(3) specifies the maximum number of Arnoldi |
c     | iterations allowed.  Mode 2 of SNAUPD is used     |
c     | (IPARAM(7) = 2). All these options can be changed |
c     | by the user. For details, see the documentation   |
c     | in SNBAND.                                        |
c     %---------------------------------------------------%
c
      mode = 2
      maxitr = 300
c
      iparam(3) = maxitr 
      iparam(7) = mode 
c
c     %--------------------------------------------%
c     | Construct matrices A and M in LAPACK-style |
c     | banded form.                               |
c     %--------------------------------------------%
c
c     %---------------------------------------------%
c     | Zero out the workspace for banded matrices. |
c     %---------------------------------------------%
c
      call slaset('A', lda, n, zero, zero, a, lda)
      call slaset('A', lda, n, zero, zero, m, lda)
      call slaset('A', lda, n, zero, zero, rfac, lda)
c
c     %-------------------------------------%
c     | KU, KL are number of superdiagonals |
c     | and subdiagonals within the band of |
c     | matrices A and M.                   |
c     %-------------------------------------%
c
      kl   = 1 
      ku   = 1 
c
c     %---------------% 
c     | Main diagonal |
c     %---------------%
c
      h = one / real (n+1)
c
      idiag = kl+ku+1
      do 30 j = 1, n
         a(idiag,j) = 2.0E+0  / h
         m(idiag,j) = 4.0E+0  * h
  30  continue 
c 
c     %-------------------------------------%
c     | First subdiagonal and superdiagonal |
c     %-------------------------------------%
c 
      isup = kl+ku
      isub = kl+ku+2
      rho = 1.0E+1 
      do 50 j = 1, n
         a(isup,j+1) = -one/h + rho/two
         a(isub,j) = -one/h - rho/two
         m(isup,j+1) = one*h
         m(isub,j) = one*h
  50  continue 
c
c     %------------------------------------------------%
c     | Call ARPACK banded solver to find eigenvalues  |
c     | and eigenvectors. The real parts of the        |
c     | eigenvalues are returned in the first column   |
c     | of D, the imaginary parts are returned in the  |
c     | second column of D.  Eigenvectors are returned |
c     | in the first NCONV (=IPARAM(5)) columns of V.  |
c     %------------------------------------------------%
c
      rvec = .true. 
      call snband( rvec, 'A', select, d, d(1,2), v, ldv, sigmar, 
     &     sigmai, workev, n, A, M, lda, rfac, cfac, kl, ku, 
     &     which, bmat, nev, tol, resid, ncv, v, ldv, iparam, 
     &     workd, workl, lworkl, workc, iwork, info)
c
      if ( info .eq. 0) then
c
c        %-----------------------------------%
c        | Print out convergence information |
c        %-----------------------------------%
c
         nconv = iparam(5)
c
         print *, ' '
         print *, ' _NBDR3 '
         print *, ' ====== '
         print *, ' '
         print *, ' The size of the matrix is ', n
         print *, ' Number of eigenvalue requested is ', nev
         print *, ' The number of Arnoldi vectors generated',
     &            ' (NCV) is ', ncv
         print *, ' The number of converged Ritz values is ',
     &              nconv
         print *, ' What portion of the spectrum ', which
         print *, ' The number of Implicit Arnoldi ',
     &              ' update taken is ', iparam(3)
         print *, ' The number of OP*x is ', iparam(9)
         print *, ' The convergence tolerance is ', tol
         print *, ' '
c
c        %----------------------------%
c        | Compute the residual norm. |
c        |    ||  A*x - lambda*x ||   |
c        %----------------------------%
c
         first = .true. 
         do 90 j = 1, nconv
c
            if ( d(j,2) .eq. zero ) then
c
c              %--------------------%
c              | Ritz value is real |
c              %--------------------%
c
               call sgbmv('Notranspose', n, n, kl, ku, one, 
     &                    a(kl+1,1), lda, v(1,j), 1, zero, 
     &                    ax, 1)
               call sgbmv('Notranspose', n, n, kl, ku, one, 
     &                    m(kl+1,1), lda, v(1,j), 1, zero, 
     &                    mx, 1)
               call saxpy(n, -d(j,1), mx, 1, ax, 1)
               d(j,3) = snrm2(n, ax, 1)
               d(j,3) = d(j,3) / abs(d(j,1))
c
            else if ( first ) then
c
c              %------------------------%
c              | Ritz value is complex  |
c              | Residual of one Ritz   |
c              | value of the conjugate |
c              | pair is computed.      | 
c              %------------------------%
c
               call sgbmv('Notranspose', n, n, kl, ku, one, 
     &                    a(kl+1,1), lda, v(1,j), 1, zero, 
     &                    ax, 1)
               call sgbmv('Notranspose', n, n, kl, ku, one, 
     &                    m(kl+1,1), lda, v(1,j), 1, zero, 
     &                    mx, 1)
               call saxpy(n, -d(j,1), mx, 1, ax, 1)
               call sgbmv('Notranspose', n, n, kl, ku, one, 
     &                    m(kl+1,1), lda, v(1,j+1), 1, zero, 
     &                    mx, 1)
               call saxpy(n, d(j,2), mx, 1, ax, 1)
               d(j,3) = snrm2(n, ax, 1)
               call sgbmv('Notranspose', n, n, kl, ku, one, 
     &                    a(kl+1,1), lda, v(1,j+1), 1, zero, 
     &                    ax, 1)
               call sgbmv('Notranspose', n, n, kl, ku, one, 
     &                    m(kl+1,1), lda, v(1,j+1), 1, zero, 
     &                    mx, 1)
               call saxpy(n, -d(j,1), mx, 1, ax, 1)
               call sgbmv('Notranspose', n, n, kl, ku, one, 
     &                    m(kl+1,1), lda, v(1,j), 1, zero, 
     &                    mx, 1)
               call saxpy(n, -d(j,2), mx, 1, ax, 1)
               d(j,3) = slapy2( d(j,3), snrm2(n, ax, 1) )
               d(j,3) = d(j,3) / slapy2(d(j,1),d(j,2))
               d(j+1,3) = d(j,3)
               first = .false.
            else
               first = .true.
            end if
c
 90      continue 

         call smout(6, nconv, 3, d, maxncv, -6,
     &             'Ritz values (Real,Imag) and relative residuals')
      else 
c
c        %-------------------------------------%
c        | Either convergence failed, or there |
c        | is error.  Check the documentation  |
c        | for SNBAND.                         |
c        %-------------------------------------%
c
          print *, ' '
          print *, ' Error with _nband, info= ', info
          print *, ' Check the documentation of _nband '
          print *, ' ' 
c
      end if
c
 9000 end