File: cndrv4.f

package info (click to toggle)
arpack 2.1-8
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k, sarge
  • size: 12,156 kB
  • ctags: 14,653
  • sloc: fortran: 49,617; makefile: 465; ansic: 39; sh: 10
file content (490 lines) | stat: -rw-r--r-- 17,445 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
      program cndrv4
c
c     Simple program to illustrate the idea of reverse communication
c     in shift and invert mode for a generalized complex nonsymmetric 
c     eigenvalue problem.
c
c     We implement example four of ex-complex.doc in DOCUMENTS directory
c
c\Example-4
c     ... Suppose we want to solve A*x = lambda*B*x in shift-invert mode,
c         where A and B are derived from a finite element discretization
c         of a 1-dimensional convection-diffusion operator
c                         (d^2u/dx^2) + rho*(du/dx)
c         on the interval [0,1] with zero boundary condition using 
c         piecewise linear elements.
c
c     ... where the shift sigma is a complex number.
c
c     ... OP = inv[A-SIGMA*M]*M  and  B = M.
c
c     ... Use mode 3 of CNAUPD.
c
c\BeginLib
c
c\Routines called:
c     cnaupd  ARPACK reverse communication interface routine.
c     cneupd  ARPACK routine that returns Ritz values and (optionally)
c             Ritz vectors.
c     cgttrf  LAPACK tridiagonal factorization routine.
c     cgttrs  LAPACK tridiagonal solve routine.
c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
c     caxpy   Level 1 BLAS that computes y <- alpha*x+y.
c     ccopy   Level 1 BLAS that copies one vector to another.
c     scnrm2  Level 1 BLAS that computes the norm of a complex vector.
c     av      Matrix vector multiplication routine that computes A*x.
c     mv      Matrix vector multiplication routine that computes M*x.
c
c\Author
c     Danny Sorensen               
c     Richard Lehoucq 
c     Chao Yang             
c     Dept. of Computational &     
c     Applied Mathematics          
c     Rice University           
c     Houston, Texas    
c
c\SCCS Information: @(#) 
c FILE: ndrv4.F   SID: 2.4   DATE OF SID: 10/18/00   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c-----------------------------------------------------------------------
c
c     %-----------------------------%
c     | Define leading dimensions   |
c     | for all arrays.             |
c     | MAXN:   Maximum dimension   |
c     |         of the A allowed.   |
c     | MAXNEV: Maximum NEV allowed |
c     | MAXNCV: Maximum NCV allowed |
c     %-----------------------------%
c
      integer           maxn, maxnev, maxncv, ldv
      parameter         (maxn=256, maxnev=10, maxncv=25, 
     &                   ldv=maxn )
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
      integer           iparam(11), ipntr(14), ipiv(maxn)
      logical           select(maxncv)
      Complex  
     &                  ax(maxn), mx(maxn), d(maxncv), 
     &                  v(ldv,maxncv), workd(3*maxn), resid(maxn),
     &                  workev(2*maxncv),
     &                  workl(3*maxncv*maxncv+5*maxncv),
     &                  dd(maxn), dl(maxn), du(maxn),
     &                  du2(maxn)
      Real 
     &                  rwork(maxn), rd(maxncv,3)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      character         bmat*1, which*2
      integer           ido, n, nev, ncv, lworkl, info, j, ierr,
     &                  nconv, maxitr, ishfts, mode
      Complex  
     &                  rho, h, s,
     &                  sigma, s1, s2, s3
      common            /convct/ rho
c
      Real 
     &                  tol
      logical           rvec 
c 
c     %-----------------------------%
c     | BLAS & LAPACK routines used |
c     %-----------------------------%
c
      Real 
     &                  scnrm2, slapy2
      external          scnrm2, caxpy, ccopy, cgttrf, cgttrs,
     &                  slapy2
c
c     %------------%
c     | Parameters |
c     %------------%
c
      Complex  
     &                   one, zero, two, four, six
      parameter         (one = (1.0E+0, 0.0E+0) ,
     &                   zero = (0.0E+0, 0.0E+0) , 
     &                   two = (2.0E+0, 0.0E+0) ,
     &                   four = (4.0E+0, 0.0E+0) ,
     &                   six = (6.0E+0, 0.0E+0) )
c
c     %-----------------------%
c     | Executable statements |
c     %-----------------------%
c
c     %----------------------------------------------------%
c     | The number N is the dimension of the matrix.  A    |
c     | generalized eigenvalue problem is solved (BMAT =   |
c     | 'G').  NEV is the number of eigenvalues (closest   |
c     | to SIGMAR) to be approximated.  Since the          |
c     | shift-invert mode is used,  WHICH is set to 'LM'.  |
c     | The user can modify NEV, NCV, SIGMA to solve       |
c     | problems of different sizes, and to get different  |
c     | parts of the spectrum.  However, The following     |
c     | conditions must be satisfied:                      |
c     |                     N <= MAXN,                     |
c     |                   NEV <= MAXNEV,                   |
c     |               NEV + 2 <= NCV <= MAXNCV             |
c     %----------------------------------------------------%
c
      n     = 100 
      nev   = 4
      ncv   = 20
      if ( n .gt. maxn ) then
         print *, ' ERROR with _NDRV4: N is greater than MAXN '
         go to 9000
      else if ( nev .gt. maxnev ) then
         print *, ' ERROR with _NDRV4: NEV is greater than MAXNEV '
         go to 9000
      else if ( ncv .gt. maxncv ) then
         print *, ' ERROR with _NDRV4: NCV is greater than MAXNCV '
         go to 9000
      end if
      bmat  = 'G'
      which = 'LM'
      sigma = one 
c
c     %--------------------------------------------------%
c     | Construct C = A - SIGMA*M in COMPLEX arithmetic. |
c     | Factor C in COMPLEX arithmetic (using LAPACK     |
c     | subroutine cgttrf). The matrix A is chosen to be |
c     | the tridiagonal matrix derived from the standard |
c     | central difference discretization of the 1-d     |
c     | convection-diffusion operator u``+ rho*u` on the |
c     | interval [0, 1] with zero Dirichlet boundary     |
c     | condition.  The matrix M is chosen to be the     |
c     | symmetric tridiagonal matrix with 4.0 on the     | 
c     | diagonal and 1.0 on the off-diagonals.           | 
c     %--------------------------------------------------%
c
      rho = (1.0E+1, 0.0E+0) 
      h = one / cmplx(n+1)
      s = rho / two
c
      s1 = -one/h - s - sigma*h/six
      s2 = two/h  - four*sigma*h/six
      s3 = -one/h + s - sigma*h/six
c
      do 10 j = 1, n-1
	 dl(j) = s1 
	 dd(j) = s2
	 du(j) = s3
  10  continue 
      dd(n) = s2 
c 
      call cgttrf(n, dl, dd, du, du2, ipiv, ierr)
      if ( ierr .ne. 0 ) then
         print*, ' '
         print*, ' ERROR with _gttrf in _NDRV4.'
         print*, ' '
         go to 9000
      end if
c
c     %-----------------------------------------------------%
c     | The work array WORKL is used in CNAUPD as           |
c     | workspace.  Its dimension LWORKL is set as          |
c     | illustrated below.  The parameter TOL determines    |
c     | the stopping criterion. If TOL<=0, machine          |
c     | precision is used.  The variable IDO is used for    |
c     | reverse communication, and is initially set to 0.   |
c     | Setting INFO=0 indicates that a random vector is    |
c     | generated in CNAUPD to start the Arnoldi iteration. |
c     %-----------------------------------------------------%
c
      lworkl = 3*ncv**2+5*ncv 
      tol    = 0.0
      ido    = 0
      info   = 0
c
c     %---------------------------------------------------%
c     | This program uses exact shifts with respect to    |
c     | the current Hessenberg matrix (IPARAM(1) = 1).    |
c     | IPARAM(3) specifies the maximum number of Arnoldi |
c     | iterations allowed. Mode 3 of CNAUPD is used      |
c     | (IPARAM(7) = 3).  All these options can be        |
c     | changed by the user. For details see the          |
c     | documentation in CNAUPD.                          |
c     %---------------------------------------------------%
c
      ishfts = 1
      maxitr = 300
      mode   = 3
c
      iparam(1) = ishfts
      iparam(3) = maxitr 
      iparam(7) = mode 
c
c     %------------------------------------------%
c     | M A I N   L O O P(Reverse communication) | 
c     %------------------------------------------%
c
 20   continue
c
c        %---------------------------------------------%
c        | Repeatedly call the routine CNAUPD and take |
c        | actions indicated by parameter IDO until    |
c        | either convergence is indicated or maxitr   |
c        | has been exceeded.                          |
c        %---------------------------------------------%
c
         call cnaupd ( ido, bmat, n, which, nev, tol, resid, ncv,
     &        v, ldv, iparam, ipntr, workd, workl, lworkl,
     &        rwork, info )

c
         if (ido .eq. -1) then
c
c           %-------------------------------------------%
c           | Perform  y <--- OP*x = inv[A-SIGMA*M]*M*x |
c           | to force starting vector into the range   |
c           | of OP.   The user should supply his/her   |
c           | own matrix vector multiplication routine  |
c           | and a linear system solver.  The matrix   |
c           | vector multiplication routine should take |
c           | workd(ipntr(1)) as the input. The final   |
c           | result should be returned to              |
c           | workd(ipntr(2)).                          |
c           %-------------------------------------------%
c
            call mv (n, workd(ipntr(1)), workd(ipntr(2)))
            call cgttrs('N', n, 1, dl, dd, du, du2, ipiv, 
     &                  workd(ipntr(2)), n, ierr)
            if ( ierr .ne. 0 ) then
               print*, ' '
               print*, ' ERROR with _gttrs in _NDRV4.'
               print*, ' '
               go to 9000
            end if 
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call CNAUPD again. |
c           %-----------------------------------------%
c
            go to 20
c
         else if ( ido .eq. 1) then
c
c           %-----------------------------------------%
c           | Perform y <-- OP*x = inv[A-sigma*M]*M*x |
c           | M*x has been saved in workd(ipntr(3)).  |
c           | The user only need the linear system    |
c           | solver here that takes workd(ipntr(3))  |
c           | as input, and returns the result to     |
c           | workd(ipntr(2)).                        |
c           %-----------------------------------------%
c
            call ccopy( n, workd(ipntr(3)), 1, workd(ipntr(2)), 1)
            call cgttrs ('N', n, 1, dl, dd, du, du2, ipiv, 
     &                   workd(ipntr(2)), n, ierr)
            if ( ierr .ne. 0 ) then
               print*, ' '
               print*, ' ERROR with _gttrs in _NDRV4.'
               print*, ' '
               go to 9000
            end if
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call CNAUPD again. |
c           %-----------------------------------------%
c
            go to 20
c
         else if ( ido .eq. 2) then
c
c           %---------------------------------------------%
c           |          Perform  y <--- M*x                |
c           | Need matrix vector multiplication routine   |
c           | here that takes workd(ipntr(1)) as input    |
c           | and returns the result to workd(ipntr(2)).  |
c           %---------------------------------------------%
c
  	    call mv (n, workd(ipntr(1)), workd(ipntr(2)))
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call CNAUPD again. |
c           %-----------------------------------------%
c
            go to 20
c
         end if 
c 
c     %-----------------------------------------%
c     | Either we have convergence, or there is |
c     | an error.                               |
c     %-----------------------------------------%
c
      if ( info .lt. 0 ) then
c
c        %----------------------------%
c        |  Error message, check the  |
c        |  documentation in CNAUPD   |
c        %----------------------------%
c
         print *, ' '
         print *, ' Error with _naupd, info = ', info
         print *, ' Check the documentation of _naupd.'
         print *, ' ' 
c
      else 
c
c        %-------------------------------------------%
c        | No fatal errors occurred.                 |
c        | Post-Process using CNEUPD.                |
c        |                                           |
c        | Computed eigenvalues may be extracted.    |
c        |                                           |
c        | Eigenvectors may also be computed now if  |
c        | desired.  (indicated by rvec = .true.)    |
c        %-------------------------------------------%
c
         rvec = .true.
c
         call cneupd (rvec, 'A', select, d, v, ldv, sigma, 
     &        workev, bmat, n, which, nev, tol, resid, ncv, v, 
     &        ldv, iparam, ipntr, workd, workl, lworkl, rwork, 
     &        ierr)
c
c        %----------------------------------------------%
c        | Eigenvalues are returned in the one          |
c        | dimensional array D.  The corresponding      |
c        | eigenvectors are returned in the first NCONV |
c        | (=IPARAM(5)) columns of the two dimensional  |
c        | array V if requested.  Otherwise, an         |
c        | orthogonal basis for the invariant subspace  |
c        | corresponding to the eigenvalues in D is     |
c        | returned in V.                               |
c        %----------------------------------------------%
c
         if ( ierr .ne. 0) then
c 
c           %------------------------------------%
c           | Error condition:                   |
c           | Check the documentation of CNEUPD. |
c           %------------------------------------%
c
             print *, ' '
             print *, ' Error with _neupd, info = ', ierr
             print *, ' Check the documentation of _neupd. '
             print *, ' '
c
         else
c
             nconv = iparam(5)
             do 80 j=1, nconv
c
                call av(n, v(1,j), ax)
                call mv(n, v(1,j), mx)
                call caxpy(n, -d(j), mx, 1, ax, 1)
                rd(j,1) = real (d(j))
                rd(j,2) = aimag(d(j))
                rd(j,3) = scnrm2(n, ax, 1)
                rd(j,3) = rd(j,3) / slapy2(rd(j,1),rd(j,2))
  80         continue
c
c            %-----------------------------%
c            | Display computed residuals. |
c            %-----------------------------%
c
             call smout(6, nconv, 3, rd, maxncv, -6,
     &            'Ritz values (Real, Imag) and direct residuals')
c
          end if
c
c        %-------------------------------------------%
c        | Print additional convergence information. |
c        %-------------------------------------------%
c
         if ( info .eq. 1) then
             print *, ' '
             print *, ' Maximum number of iterations reached.'
             print *, ' '
         else if ( info .eq. 3) then
             print *, ' '
             print *, ' No shifts could be applied during implicit',
     &                ' Arnoldi update, try increasing NCV.'
             print *, ' '
         end if
c
         print *, ' '
         print *, '_NDRV4 '
         print *, '====== '
         print *, ' '
         print *, ' Size of the matrix is ', n
         print *, ' The number of Ritz values requested is ', nev
         print *, ' The number of Arnoldi vectors generated',
     &            ' (NCV) is ', ncv
         print *, ' What portion of the spectrum: ', which
         print *, ' The number of converged Ritz values is ',
     &              nconv
         print *, ' The number of Implicit Arnoldi update',
     &            ' iterations taken is ', iparam(3)
         print *, ' The number of OP*x is ', iparam(9)
         print *, ' The convergence criterion is ', tol
         print *, ' '
c
      end if
c
 9000 continue
c
      end
c 
c==========================================================================
c
c     matrix vector multiplication subroutine
c
      subroutine mv (n, v, w)
      integer           n, j
      Complex  
     &                  v(n), w(n), one, four, six, h
      parameter         (one = (1.0E+0, 0.0E+0) ,
     &                   four = (4.0E+0, 0.0E+0) ,
     &                   six = (6.0E+0, 0.0E+0) )
c
c     Compute the matrix vector multiplication y<---M*x
c     where M is a n by n symmetric tridiagonal matrix with 4 on the 
c     diagonal, 1 on the subdiagonal and superdiagonal.
c 
      w(1) =  ( four*v(1) + one*v(2) ) / six
      do 40 j = 2,n-1
         w(j) = ( one*v(j-1) + four*v(j) + one*v(j+1) ) / six
 40   continue 
      w(n) =  ( one*v(n-1) + four*v(n) ) / six
c
      h = one / cmplx(n+1)
      call cscal(n, h, w, 1)
      return
      end
c------------------------------------------------------------------
      subroutine av (n, v, w)
      integer           n, j
      Complex  
     &                  v(n), w(n), one, two, dd, dl, du, s, h, rho 
      parameter         (one = (1.0E+0, 0.0E+0) , 
     &                   two = (2.0E+0, 0.0E+0) )
      common            /convct/ rho
c
      h = one / cmplx(n+1)
      s = rho / two
      dd = two / h
      dl = -one/h - s
      du = -one/h + s
c
      w(1) =  dd*v(1) + du*v(2)
      do 40 j = 2,n-1
         w(j) = dl*v(j-1) + dd*v(j) + du*v(j+1)
 40   continue
      w(n) =  dl*v(n-1) + dd*v(n)
      return
      end