1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
program cndrv4
c
c Simple program to illustrate the idea of reverse communication
c in shift and invert mode for a generalized complex nonsymmetric
c eigenvalue problem.
c
c We implement example four of ex-complex.doc in DOCUMENTS directory
c
c\Example-4
c ... Suppose we want to solve A*x = lambda*B*x in shift-invert mode,
c where A and B are derived from a finite element discretization
c of a 1-dimensional convection-diffusion operator
c (d^2u/dx^2) + rho*(du/dx)
c on the interval [0,1] with zero boundary condition using
c piecewise linear elements.
c
c ... where the shift sigma is a complex number.
c
c ... OP = inv[A-SIGMA*M]*M and B = M.
c
c ... Use mode 3 of CNAUPD.
c
c\BeginLib
c
c\Routines called:
c cnaupd ARPACK reverse communication interface routine.
c cneupd ARPACK routine that returns Ritz values and (optionally)
c Ritz vectors.
c cgttrf LAPACK tridiagonal factorization routine.
c cgttrs LAPACK tridiagonal solve routine.
c slapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c caxpy Level 1 BLAS that computes y <- alpha*x+y.
c ccopy Level 1 BLAS that copies one vector to another.
c scnrm2 Level 1 BLAS that computes the norm of a complex vector.
c av Matrix vector multiplication routine that computes A*x.
c mv Matrix vector multiplication routine that computes M*x.
c
c\Author
c Danny Sorensen
c Richard Lehoucq
c Chao Yang
c Dept. of Computational &
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: ndrv4.F SID: 2.4 DATE OF SID: 10/18/00 RELEASE: 2
c
c\Remarks
c 1. None
c
c\EndLib
c-----------------------------------------------------------------------
c
c %-----------------------------%
c | Define leading dimensions |
c | for all arrays. |
c | MAXN: Maximum dimension |
c | of the A allowed. |
c | MAXNEV: Maximum NEV allowed |
c | MAXNCV: Maximum NCV allowed |
c %-----------------------------%
c
integer maxn, maxnev, maxncv, ldv
parameter (maxn=256, maxnev=10, maxncv=25,
& ldv=maxn )
c
c %--------------%
c | Local Arrays |
c %--------------%
c
integer iparam(11), ipntr(14), ipiv(maxn)
logical select(maxncv)
Complex
& ax(maxn), mx(maxn), d(maxncv),
& v(ldv,maxncv), workd(3*maxn), resid(maxn),
& workev(2*maxncv),
& workl(3*maxncv*maxncv+5*maxncv),
& dd(maxn), dl(maxn), du(maxn),
& du2(maxn)
Real
& rwork(maxn), rd(maxncv,3)
c
c %---------------%
c | Local Scalars |
c %---------------%
c
character bmat*1, which*2
integer ido, n, nev, ncv, lworkl, info, j, ierr,
& nconv, maxitr, ishfts, mode
Complex
& rho, h, s,
& sigma, s1, s2, s3
common /convct/ rho
c
Real
& tol
logical rvec
c
c %-----------------------------%
c | BLAS & LAPACK routines used |
c %-----------------------------%
c
Real
& scnrm2, slapy2
external scnrm2, caxpy, ccopy, cgttrf, cgttrs,
& slapy2
c
c %------------%
c | Parameters |
c %------------%
c
Complex
& one, zero, two, four, six
parameter (one = (1.0E+0, 0.0E+0) ,
& zero = (0.0E+0, 0.0E+0) ,
& two = (2.0E+0, 0.0E+0) ,
& four = (4.0E+0, 0.0E+0) ,
& six = (6.0E+0, 0.0E+0) )
c
c %-----------------------%
c | Executable statements |
c %-----------------------%
c
c %----------------------------------------------------%
c | The number N is the dimension of the matrix. A |
c | generalized eigenvalue problem is solved (BMAT = |
c | 'G'). NEV is the number of eigenvalues (closest |
c | to SIGMAR) to be approximated. Since the |
c | shift-invert mode is used, WHICH is set to 'LM'. |
c | The user can modify NEV, NCV, SIGMA to solve |
c | problems of different sizes, and to get different |
c | parts of the spectrum. However, The following |
c | conditions must be satisfied: |
c | N <= MAXN, |
c | NEV <= MAXNEV, |
c | NEV + 2 <= NCV <= MAXNCV |
c %----------------------------------------------------%
c
n = 100
nev = 4
ncv = 20
if ( n .gt. maxn ) then
print *, ' ERROR with _NDRV4: N is greater than MAXN '
go to 9000
else if ( nev .gt. maxnev ) then
print *, ' ERROR with _NDRV4: NEV is greater than MAXNEV '
go to 9000
else if ( ncv .gt. maxncv ) then
print *, ' ERROR with _NDRV4: NCV is greater than MAXNCV '
go to 9000
end if
bmat = 'G'
which = 'LM'
sigma = one
c
c %--------------------------------------------------%
c | Construct C = A - SIGMA*M in COMPLEX arithmetic. |
c | Factor C in COMPLEX arithmetic (using LAPACK |
c | subroutine cgttrf). The matrix A is chosen to be |
c | the tridiagonal matrix derived from the standard |
c | central difference discretization of the 1-d |
c | convection-diffusion operator u``+ rho*u` on the |
c | interval [0, 1] with zero Dirichlet boundary |
c | condition. The matrix M is chosen to be the |
c | symmetric tridiagonal matrix with 4.0 on the |
c | diagonal and 1.0 on the off-diagonals. |
c %--------------------------------------------------%
c
rho = (1.0E+1, 0.0E+0)
h = one / cmplx(n+1)
s = rho / two
c
s1 = -one/h - s - sigma*h/six
s2 = two/h - four*sigma*h/six
s3 = -one/h + s - sigma*h/six
c
do 10 j = 1, n-1
dl(j) = s1
dd(j) = s2
du(j) = s3
10 continue
dd(n) = s2
c
call cgttrf(n, dl, dd, du, du2, ipiv, ierr)
if ( ierr .ne. 0 ) then
print*, ' '
print*, ' ERROR with _gttrf in _NDRV4.'
print*, ' '
go to 9000
end if
c
c %-----------------------------------------------------%
c | The work array WORKL is used in CNAUPD as |
c | workspace. Its dimension LWORKL is set as |
c | illustrated below. The parameter TOL determines |
c | the stopping criterion. If TOL<=0, machine |
c | precision is used. The variable IDO is used for |
c | reverse communication, and is initially set to 0. |
c | Setting INFO=0 indicates that a random vector is |
c | generated in CNAUPD to start the Arnoldi iteration. |
c %-----------------------------------------------------%
c
lworkl = 3*ncv**2+5*ncv
tol = 0.0
ido = 0
info = 0
c
c %---------------------------------------------------%
c | This program uses exact shifts with respect to |
c | the current Hessenberg matrix (IPARAM(1) = 1). |
c | IPARAM(3) specifies the maximum number of Arnoldi |
c | iterations allowed. Mode 3 of CNAUPD is used |
c | (IPARAM(7) = 3). All these options can be |
c | changed by the user. For details see the |
c | documentation in CNAUPD. |
c %---------------------------------------------------%
c
ishfts = 1
maxitr = 300
mode = 3
c
iparam(1) = ishfts
iparam(3) = maxitr
iparam(7) = mode
c
c %------------------------------------------%
c | M A I N L O O P(Reverse communication) |
c %------------------------------------------%
c
20 continue
c
c %---------------------------------------------%
c | Repeatedly call the routine CNAUPD and take |
c | actions indicated by parameter IDO until |
c | either convergence is indicated or maxitr |
c | has been exceeded. |
c %---------------------------------------------%
c
call cnaupd ( ido, bmat, n, which, nev, tol, resid, ncv,
& v, ldv, iparam, ipntr, workd, workl, lworkl,
& rwork, info )
c
if (ido .eq. -1) then
c
c %-------------------------------------------%
c | Perform y <--- OP*x = inv[A-SIGMA*M]*M*x |
c | to force starting vector into the range |
c | of OP. The user should supply his/her |
c | own matrix vector multiplication routine |
c | and a linear system solver. The matrix |
c | vector multiplication routine should take |
c | workd(ipntr(1)) as the input. The final |
c | result should be returned to |
c | workd(ipntr(2)). |
c %-------------------------------------------%
c
call mv (n, workd(ipntr(1)), workd(ipntr(2)))
call cgttrs('N', n, 1, dl, dd, du, du2, ipiv,
& workd(ipntr(2)), n, ierr)
if ( ierr .ne. 0 ) then
print*, ' '
print*, ' ERROR with _gttrs in _NDRV4.'
print*, ' '
go to 9000
end if
c
c %-----------------------------------------%
c | L O O P B A C K to call CNAUPD again. |
c %-----------------------------------------%
c
go to 20
c
else if ( ido .eq. 1) then
c
c %-----------------------------------------%
c | Perform y <-- OP*x = inv[A-sigma*M]*M*x |
c | M*x has been saved in workd(ipntr(3)). |
c | The user only need the linear system |
c | solver here that takes workd(ipntr(3)) |
c | as input, and returns the result to |
c | workd(ipntr(2)). |
c %-----------------------------------------%
c
call ccopy( n, workd(ipntr(3)), 1, workd(ipntr(2)), 1)
call cgttrs ('N', n, 1, dl, dd, du, du2, ipiv,
& workd(ipntr(2)), n, ierr)
if ( ierr .ne. 0 ) then
print*, ' '
print*, ' ERROR with _gttrs in _NDRV4.'
print*, ' '
go to 9000
end if
c
c %-----------------------------------------%
c | L O O P B A C K to call CNAUPD again. |
c %-----------------------------------------%
c
go to 20
c
else if ( ido .eq. 2) then
c
c %---------------------------------------------%
c | Perform y <--- M*x |
c | Need matrix vector multiplication routine |
c | here that takes workd(ipntr(1)) as input |
c | and returns the result to workd(ipntr(2)). |
c %---------------------------------------------%
c
call mv (n, workd(ipntr(1)), workd(ipntr(2)))
c
c %-----------------------------------------%
c | L O O P B A C K to call CNAUPD again. |
c %-----------------------------------------%
c
go to 20
c
end if
c
c %-----------------------------------------%
c | Either we have convergence, or there is |
c | an error. |
c %-----------------------------------------%
c
if ( info .lt. 0 ) then
c
c %----------------------------%
c | Error message, check the |
c | documentation in CNAUPD |
c %----------------------------%
c
print *, ' '
print *, ' Error with _naupd, info = ', info
print *, ' Check the documentation of _naupd.'
print *, ' '
c
else
c
c %-------------------------------------------%
c | No fatal errors occurred. |
c | Post-Process using CNEUPD. |
c | |
c | Computed eigenvalues may be extracted. |
c | |
c | Eigenvectors may also be computed now if |
c | desired. (indicated by rvec = .true.) |
c %-------------------------------------------%
c
rvec = .true.
c
call cneupd (rvec, 'A', select, d, v, ldv, sigma,
& workev, bmat, n, which, nev, tol, resid, ncv, v,
& ldv, iparam, ipntr, workd, workl, lworkl, rwork,
& ierr)
c
c %----------------------------------------------%
c | Eigenvalues are returned in the one |
c | dimensional array D. The corresponding |
c | eigenvectors are returned in the first NCONV |
c | (=IPARAM(5)) columns of the two dimensional |
c | array V if requested. Otherwise, an |
c | orthogonal basis for the invariant subspace |
c | corresponding to the eigenvalues in D is |
c | returned in V. |
c %----------------------------------------------%
c
if ( ierr .ne. 0) then
c
c %------------------------------------%
c | Error condition: |
c | Check the documentation of CNEUPD. |
c %------------------------------------%
c
print *, ' '
print *, ' Error with _neupd, info = ', ierr
print *, ' Check the documentation of _neupd. '
print *, ' '
c
else
c
nconv = iparam(5)
do 80 j=1, nconv
c
call av(n, v(1,j), ax)
call mv(n, v(1,j), mx)
call caxpy(n, -d(j), mx, 1, ax, 1)
rd(j,1) = real (d(j))
rd(j,2) = aimag(d(j))
rd(j,3) = scnrm2(n, ax, 1)
rd(j,3) = rd(j,3) / slapy2(rd(j,1),rd(j,2))
80 continue
c
c %-----------------------------%
c | Display computed residuals. |
c %-----------------------------%
c
call smout(6, nconv, 3, rd, maxncv, -6,
& 'Ritz values (Real, Imag) and direct residuals')
c
end if
c
c %-------------------------------------------%
c | Print additional convergence information. |
c %-------------------------------------------%
c
if ( info .eq. 1) then
print *, ' '
print *, ' Maximum number of iterations reached.'
print *, ' '
else if ( info .eq. 3) then
print *, ' '
print *, ' No shifts could be applied during implicit',
& ' Arnoldi update, try increasing NCV.'
print *, ' '
end if
c
print *, ' '
print *, '_NDRV4 '
print *, '====== '
print *, ' '
print *, ' Size of the matrix is ', n
print *, ' The number of Ritz values requested is ', nev
print *, ' The number of Arnoldi vectors generated',
& ' (NCV) is ', ncv
print *, ' What portion of the spectrum: ', which
print *, ' The number of converged Ritz values is ',
& nconv
print *, ' The number of Implicit Arnoldi update',
& ' iterations taken is ', iparam(3)
print *, ' The number of OP*x is ', iparam(9)
print *, ' The convergence criterion is ', tol
print *, ' '
c
end if
c
9000 continue
c
end
c
c==========================================================================
c
c matrix vector multiplication subroutine
c
subroutine mv (n, v, w)
integer n, j
Complex
& v(n), w(n), one, four, six, h
parameter (one = (1.0E+0, 0.0E+0) ,
& four = (4.0E+0, 0.0E+0) ,
& six = (6.0E+0, 0.0E+0) )
c
c Compute the matrix vector multiplication y<---M*x
c where M is a n by n symmetric tridiagonal matrix with 4 on the
c diagonal, 1 on the subdiagonal and superdiagonal.
c
w(1) = ( four*v(1) + one*v(2) ) / six
do 40 j = 2,n-1
w(j) = ( one*v(j-1) + four*v(j) + one*v(j+1) ) / six
40 continue
w(n) = ( one*v(n-1) + four*v(n) ) / six
c
h = one / cmplx(n+1)
call cscal(n, h, w, 1)
return
end
c------------------------------------------------------------------
subroutine av (n, v, w)
integer n, j
Complex
& v(n), w(n), one, two, dd, dl, du, s, h, rho
parameter (one = (1.0E+0, 0.0E+0) ,
& two = (2.0E+0, 0.0E+0) )
common /convct/ rho
c
h = one / cmplx(n+1)
s = rho / two
dd = two / h
dl = -one/h - s
du = -one/h + s
c
w(1) = dd*v(1) + du*v(2)
do 40 j = 2,n-1
w(j) = dl*v(j-1) + dd*v(j) + du*v(j+1)
40 continue
w(n) = dl*v(n-1) + dd*v(n)
return
end
|