File: zndrv3.f

package info (click to toggle)
arpack 2.1-8
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k, sarge
  • size: 12,156 kB
  • ctags: 14,653
  • sloc: fortran: 49,617; makefile: 465; ansic: 39; sh: 10
file content (451 lines) | stat: -rw-r--r-- 15,931 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
      program zndrv3 
c
c     Simple program to illustrate the idea of reverse communication
c     in inverse mode for a generalized complex nonsymmetric eigenvalue 
c     problem.
c
c     We implement example three of ex-complex.doc in DOCUMENTS directory
c
c\Example-3
c     ... Suppose we want to solve A*x = lambda*B*x in regular mode,
c         where A and B are derived from the finite element discretization
c         of the 1-dimensional convection-diffusion operator
c                   (d^2u/dx^2) + rho*(du/dx)
c         on the interval [0,1] with zero boundary condition using 
c         piecewise linear elements. 
c
c     ... OP = inv[M]*A  and  B = M.
c
c     ... Use mode 2 of ZNAUPD .
c
c\BeginLib
c
c\Routines called:
c     znaupd   ARPACK reverse communication interface routine.
c     zneupd   ARPACK routine that returns Ritz values and (optionally)
c             Ritz vectors.
c     zgttrf   LAPACK tridiagonal factorization routine.
c     zgttrs   LAPACK tridiagonal solve routine.
c     dlapy2   LAPACK routine to compute sqrt(x**2+y**2) carefully.
c     zaxpy    Level 1 BLAS that computes y <- alpha*x+y.
c     dznrm2   Level 1 BLAS that computes the norm of a vector.
c     av      Matrix vector multiplication routine that computes A*x.
c     mv      Matrix vector multiplication routine that computes M*x.
c
c\Author
c     Richard Lehoucq
c     Danny Sorensen
c     Chao Yang
c     Dept. of Computational &
c     Applied Mathematics
c     Rice University
c     Houston, Texas
c
c\SCCS Information: @(#)
c FILE: ndrv3.F   SID: 2.4   DATE OF SID: 10/18/00   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c--------------------------------------------------------------------------
c
c     %-----------------------------%
c     | Define leading dimensions   |
c     | for all arrays.             |
c     | MAXN:   Maximum dimension   |
c     |         of the A allowed.   |
c     | MAXNEV: Maximum NEV allowed |
c     | MAXNCV: Maximum NCV allowed |
c     %-----------------------------%
c
      integer           maxn, maxnev, maxncv, ldv
      parameter         (maxn=256, maxnev=10, maxncv=25, 
     &                   ldv=maxn )
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
      integer           iparam(11), ipntr(14), ipiv(maxn)
      logical           select(maxncv)
      Complex*16 
     &                  ax(maxn), mx(maxn), d(maxncv), resid(maxn),
     &                  v(ldv,maxncv), workd(3*maxn), 
     &                  workev(2*maxncv),
     &                  workl(3*maxncv*maxncv+5*maxncv),
     &                  dd(maxn), dl(maxn), du(maxn), du2(maxn)
      Double precision             
     &                  rwork(maxn), rd(maxncv,3)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      character         bmat*1, which*2
      integer           ido, n, nev, ncv, lworkl, info, ierr, j,
     &                  nconv, maxitr, ishfts, mode
      Complex*16            
     &                  sigma, h
      Double precision 
     &                  tol
      logical           rvec
c
c     %------------%
c     | Parameters |
c     %------------%
c
      Complex*16   
     &                  zero, one
      parameter         (zero = (0.0D+0, 0.0D+0) ,
     &                   one = (1.0D+0, 0.0D+0) )
c
c     %-----------------------------%
c     | BLAS & LAPACK routines used |
c     %-----------------------------%
c
      Double precision  
     &                  dznrm2 , dlapy2 
      external          zaxpy , zcopy , dznrm2 , zgttrf , zgttrs ,
     &                  dlapy2 
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c
c     %----------------------------------------------------%
c     | The number N is the dimension of the matrix.  A    |
c     | generalized eigenvalue problem is solved (BMAT =   |
c     | 'G').  NEV is the number of eigenvalues to be      |
c     | approximated.  The user can modify NEV, NCV, WHICH |
c     | to solve problems of different sizes, and to get   |
c     | different parts of the spectrum.  However, The     |
c     | following conditions must be satisfied:            |
c     |                    N <= MAXN,                      |
c     |                  NEV <= MAXNEV,                    |
c     |              NEV + 2 <= NCV <= MAXNCV              |
c     %----------------------------------------------------%
c
      n     = 100 
      nev   = 4 
      ncv   = 20 
      if ( n .gt. maxn ) then
         print *, ' ERROR with _NDRV3: N is greater than MAXN '
         go to 9000
      else if ( nev .gt. maxnev ) then
         print *, ' ERROR with _NDRV3: NEV is greater than MAXNEV '
         go to 9000
      else if ( ncv .gt. maxncv ) then
         print *, ' ERROR with _NDRV3: NCV is greater than MAXNCV '
         go to 9000
      end if
      bmat  = 'G'
      which = 'LM'
      sigma = zero
c
c     %-----------------------------------------------------%
c     | The matrix M is chosen to be the symmetric tri-     |
c     | diagonal matrix with 4 on the diagonal and 1 on the |
c     | off diagonals. It is factored by LAPACK subroutine  |
c     | zgttrf .                                             |
c     %-----------------------------------------------------%
c
      h = one / dcmplx (n+1)
      do 20 j = 1, n-1
         dl(j) = one*h
         dd(j) = (4.0D+0, 0.0D+0) *h
         du(j) = one*h 
  20  continue 
      dd(n) = (4.0D+0, 0.0D+0) *h 
c
      call zgttrf (n, dl, dd, du, du2, ipiv, ierr) 
      if ( ierr .ne. 0 ) then
         print*, ' '
         print*, ' ERROR with _gttrf. ' 
         print*, ' ' 
         go to 9000
      end if
c
c     %-----------------------------------------------------%
c     | The work array WORKL is used in ZNAUPD  as           |
c     | workspace.  Its dimension LWORKL is set as          |
c     | illustrated below.  The parameter TOL determines    |
c     | the stopping criterion. If TOL<=0, machine          |
c     | precision is used.  The variable IDO is used for    |
c     | reverse communication, and is initially set to 0.   |
c     | Setting INFO=0 indicates that a random vector is    |
c     | generated in ZNAUPD  to start the Arnoldi iteration. |
c     %-----------------------------------------------------%
c
      lworkl = 3*ncv**2+5*ncv 
      tol    = 0.0 
      ido    = 0
      info   = 0
c
c     %---------------------------------------------------%
c     | This program uses exact shifts with respect to    |
c     | the current Hessenberg matrix (IPARAM(1) = 1).    |
c     | IPARAM(3) specifies the maximum number of Arnoldi |
c     | iterations allowed.  Mode 2 of ZNAUPD  is used     |
c     | (IPARAM(7) = 2).  All these options can be        |
c     | changed by the user. For details, see the         |
c     | documentation in ZNAUPD .                          |
c     %---------------------------------------------------%
c
      ishfts = 1
      maxitr = 300
      mode   = 2
c
      iparam(1) = ishfts
      iparam(3) = maxitr  
      iparam(7) = mode 
c
c     %-------------------------------------------%
c     | M A I N   L O O P (Reverse communication) |
c     %-------------------------------------------%
c
 10   continue
c
c        %---------------------------------------------%
c        | Repeatedly call the routine ZNAUPD  and take | 
c        | actions indicated by parameter IDO until    |
c        | either convergence is indicated or maxitr   |
c        | has been exceeded.                          |
c        %---------------------------------------------%
c
         call znaupd  ( ido, bmat, n, which, nev, tol, resid, ncv, 
     &        v, ldv, iparam, ipntr, workd, workl, lworkl, 
     &        rwork, info )
c
         if (ido .eq. -1 .or. ido .eq. 1) then
c
c           %----------------------------------------%
c           | Perform  y <--- OP*x = inv[M]*A*x      |
c           | The user should supply his/her own     |
c           | matrix vector routine and a linear     |
c           | system solver.  The matrix-vector      |
c           | subroutine should take workd(ipntr(1)) |
c           | as input, and the final result should  |
c           | be returned to workd(ipntr(2)).        |
c           %----------------------------------------%
c
            call av (n, workd(ipntr(1)), workd(ipntr(2)))
            call zgttrs ('N', n, 1, dl, dd, du, du2, ipiv,
     &                  workd(ipntr(2)), n, ierr)
            if ( ierr .ne. 0 ) then
               print*, ' ' 
               print*, ' ERROR with _gttrs. ' 
               print*, ' '
               go to 9000
            end if
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call ZNAUPD  again. |
c           %-----------------------------------------%
c
            go to 10
c
         else if ( ido .eq. 2) then
c
c           %-------------------------------------%
c           |        Perform  y <--- M*x          |
c           | The matrix vector multiplication    |
c           | routine should take workd(ipntr(1)) |
c           | as input and return the result to   |
c           | workd(ipntr(2)).                    |
c           %-------------------------------------%
c
            call mv (n, workd(ipntr(1)), workd(ipntr(2)))
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call ZNAUPD  again. |
c           %-----------------------------------------%
c
            go to 10
c
         end if
c
c     %-----------------------------------------%
c     | Either we have convergence, or there is |
c     | an error.                               |
c     %-----------------------------------------% 
c
      if ( info .lt. 0 ) then
c
c        %--------------------------%
c        | Error message. Check the |
c        | documentation in ZNAUPD . |
c        %--------------------------%
c
         print *, ' '
         print *, ' Error with _naupd, info = ',info
         print *, ' Check the documentation of _naupd.'
         print *, ' ' 
c
      else 
c
c        %-------------------------------------------%
c        | No fatal errors occurred.                 |
c        | Post-Process using ZNEUPD .                |
c        |                                           |
c        | Computed eigenvalues may be extracted.    |  
c        |                                           |
c        | Eigenvectors may also be computed now if  |
c        | desired.  (indicated by rvec = .true.)    | 
c        %-------------------------------------------%
c
         rvec = .true.
c
         call zneupd  ( rvec, 'A', select, d, v, ldv, sigma, 
     &        workev, bmat, n, which, nev, tol, resid, ncv, v, 
     &        ldv, iparam, ipntr, workd, workl, lworkl, rwork,
     &        ierr )
c
c        %----------------------------------------------%
c        | Eigenvalues are returned in the one          |
c        | dimensional array D.  The corresponding      |
c        | eigenvectors are returned in the first NCONV |
c        | (=IPARAM(5)) columns of the two dimensional  |
c        | array V if requested.  Otherwise, an         |
c        | orthogonal basis for the invariant subspace  |
c        | corresponding to the eigenvalues in D is     |
c        | returned in V.                               |
c        %----------------------------------------------%
c
         if ( ierr .ne. 0 ) then
c
c           %------------------------------------%
c           | Error condition:                   |
c           | Check the documentation of ZNEUPD . |
c           %------------------------------------%
c 
            print *, ' ' 
            print *, ' Error with _neupd, info = ', ierr
            print *, ' Check the documentation of _neupd'
            print *, ' '
c
         else
c
            nconv = iparam(5)
            do 80 j=1, nconv 
c
c              %---------------------------%
c              | Compute the residual norm |
c              |                           |
c              |  ||  A*x - lambda*M*x ||  |
c              |                           |
c              | for the NCONV accurately  |
c              | computed eigenvalues and  |
c              | eigenvectors.  (iparam(5) |
c              | indicates how many are    |
c              | accurate to the requested |
c              | tolerance)                |
c              %---------------------------%
c
               call av(n, v(1,j), ax)
               call mv(n, v(1,j), mx)
               call zaxpy (n, -d(j), mx, 1, ax, 1)
               rd(j,1) = dble (d(j))
               rd(j,2) = dimag (d(j))
               rd(j,3) = dznrm2 (n, ax, 1)
               rd(j,3) = rd(j,3) / dlapy2 (rd(j,1),rd(j,2))
  80        continue
c
c           %-----------------------------%
c           | Display computed residuals. |
c           %-----------------------------%
c
            call dmout (6, nconv, 3, rd, maxncv, -6,
     &           'Ritz values (Real, Imag) and relative residuals')
c
         end if
c
c        %------------------------------------------%
c        | Print additional convergence information |
c        %------------------------------------------%
c
         if ( info .eq. 1) then
            print *, ' '
            print *, ' Maximum number of iterations reached.'
            print *, ' '
         else if ( info .eq. 3) then
            print *, ' ' 
            print *, ' No shifts could be applied during implicit',
     &               ' Arnoldi update, try increasing NCV.'
            print *, ' '
         end if      
c
         print *, ' '
         print *, '_NDRV3 '
         print *, '====== '
         print *, ' '
         print *, ' Size of the matrix is ', n
         print *, ' The number of Ritz values requested is ', nev
         print *, ' The number of Arnoldi vectors generated ',
     &            ' (NCV) is ', ncv
         print *, ' What portion of the spectrum: ', which
         print *, ' The number of converged Ritz values is ', 
     &              nconv 
         print *, ' The number of Implicit Arnoldi update',
     &            ' iterations taken is ', iparam(3)
         print *, ' The number of OP*x is ', iparam(9)
         print *, ' The convergence criterion is ', tol
         print *, ' '
c
      end if
c
 9000 continue
c
      end
c 
c==========================================================================
c
c     matrix vector multiplication subroutine
c
      subroutine av (n, v, w)
      integer           n, j
      Complex*16             
     &                  v(n), w(n), one, two, dd, dl, du, s, h, rho 
      parameter         (one = (1.0D+0, 0.0D+0) ,
     &                   two = (2.0D+0, 0.0D+0) ,
     &                   rho = (1.0D+1, 0.0D+0) )
c
c     Compute the matrix vector multiplication y<---A*x
c     where A is the stiffness matrix formed by using piecewise linear 
c     elements on [0,1].
c
      h = one / dcmplx (n+1)
      s = rho / two
      dd = two / h
      dl = -one/h - s
      du = -one/h + s
c
      w(1) =  dd*v(1) + du*v(2)
      do 10 j = 2,n-1
         w(j) = dl*v(j-1) + dd*v(j) + du*v(j+1) 
 10   continue 
      w(n) =  dl*v(n-1) + dd*v(n) 
      return
      end
c------------------------------------------------------------------------
      subroutine mv (n, v, w)
      integer           n, j
      Complex*16  
     &                  v(n), w(n), one, four, h
      parameter         (one = (1.0D+0, 0.0D+0) , 
     &                   four = (4.0D+0, 0.0D+0) )
c
c     Compute the matrix vector multiplication y<---M*x
c     where M is the mass matrix formed by using piecewise linear elements 
c     on [0,1].
c 
      w(1) =  four*v(1) + one*v(2)
      do 10 j = 2,n-1
         w(j) = one*v(j-1) + four*v(j) + one*v(j+1) 
 10   continue 
      w(n) =  one*v(n-1) + four*v(n) 
c
      h = one / dcmplx (n+1)
      call zscal (n, h, w, 1)
      return
      end