File: dndrv6.f

package info (click to toggle)
arpack 2.1-8
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k, sarge
  • size: 12,156 kB
  • ctags: 14,653
  • sloc: fortran: 49,617; makefile: 465; ansic: 39; sh: 10
file content (612 lines) | stat: -rw-r--r-- 22,337 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
      program dndrv6
c
c     Simple program to illustrate the idea of reverse communication
c     in shift-invert mode for a generalized nonsymmetric eigenvalue problem.
c
c     We implement example six of ex-nonsym.doc in DOCUMENTS directory
c
c\Example-6
c
c     ... Suppose we want to solve A*x = lambda*B*x in shift-invert mode
c         The matrix A is the tridiagonal matrix with 2 on the diagonal, 
c         -2 on the subdiagonal and 3 on the superdiagonal.  The matrix M 
c         is the tridiagonal matrix with 4 on the diagonal and 1 on the 
c         off-diagonals.
c     ... The shift sigma is a complex number (sigmar, sigmai).
c     ... OP = Imaginary_Part{inv[A-(SIGMAR,SIGMAI)*M]*M  and  B = M.
c     ... Use mode 4 of DNAUPD.
c
c\BeginLib
c
c\Routines called:
c     dnaupd  ARPACK reverse communication interface routine.
c     dneupd  ARPACK routine that returns Ritz values and (optionally)
c             Ritz vectors.
c     zgttrf  LAPACK complex matrix factorization routine.
c     zgttrs  LAPACK complex linear system solve routine.
c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
c     daxpy   Level 1 BLAS that computes y <- alpha*x+y.
c     ddot    Level 1 BLAS that computes the dot product of two vectors.
c     dnrm2   Level 1 BLAS that computes the norm of a vector.
c     av      Matrix vector subroutine that computes A*x.
c     mv      Matrix vector subroutine that computes M*x.
c
c\Author
c     Richard Lehoucq 
c     Danny Sorensen               
c     Chao Yang             
c     Dept. of Computational &     
c     Applied Mathematics          
c     Rice University           
c     Houston, Texas    
c
c\SCCS Information: @(#) 
c FILE: ndrv6.F   SID: 2.5   DATE OF SID: 10/17/00   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c-------------------------------------------------------------------------
c
c     %-----------------------------%
c     | Define leading dimensions   |
c     | for all arrays.             |
c     | MAXN:   Maximum dimension   |
c     |         of the A allowed.   |
c     | MAXNEV: Maximum NEV allowed |
c     | MAXNCV: Maximum NCV allowed |
c     %-----------------------------%
c
      integer           maxn, maxnev, maxncv, ldv
      parameter         (maxn=256, maxnev=10, maxncv=25, 
     &                   ldv=maxn )
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
      integer           iparam(11), ipntr(14), ipiv(maxn)
      logical           select(maxncv)
      Double precision
     &                  ax(maxn), mx(maxn), d(maxncv,3), resid(maxn),
     &                  v(ldv,maxncv), workd(3*maxn),
     &                  workev(3*maxncv),
     &                  workl(3*maxncv*maxncv+6*maxncv)
      Complex*16         
     &                  cdd(maxn), cdl(maxn), cdu(maxn),
     &                  cdu2(maxn), ctemp(maxn)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      character         bmat*1, which*2
      integer           ido, n, nev, ncv, lworkl, info, ierr, j,
     &                  nconv, maxitr, ishfts, mode
      Double precision
     &                  tol, numr, numi, denr, deni, sigmar, sigmai
      Complex*16         
     &                  c1, c2, c3
      logical           first, rvec 
c 
c     %-----------------------------%
c     | BLAS & LAPACK routines used |
c     %-----------------------------%
c
      external          zgttrf, zgttrs
      Double precision   
     &                  ddot, dnrm2, dlapy2
      external          ddot, dnrm2, dlapy2
c
c     %------------%
c     | Parameters |
c     %------------%
c
      Double precision
     &                   zero
      parameter          (zero = 0.0D+0)
c
c     %--------------------%
c     | Intrinsic Function |
c     %--------------------%
c
      intrinsic          dimag, dcmplx, abs
c
c     %-----------------------%
c     | Executable statements |
c     %-----------------------%
c
c     %----------------------------------------------------%
c     | The number N is the dimension of the matrix.  A    |
c     | generalized eigenvalue problem is solved (BMAT =   |
c     | 'G').  NEV is the number of eigenvalues (closest   |
c     | to the shift (SIGMAR,SIGMAI)) to be approximated.  |
c     | Since the shift-invert mode is used, WHICH is set  |
c     | to 'LM'.  The user can modify NEV, NCV, SIGMA to   |
c     | solve problems of different sizes, and to get      |
c     | different parts of the spectrum. However, The      |
c     | following conditions must be satisfied:            |
c     |                     N <= MAXN,                     | 
c     |                   NEV <= MAXNEV,                   |
c     |               NEV + 2 <= NCV <= MAXNCV             | 
c     %----------------------------------------------------%
c
      n     = 100 
      nev   = 4 
      ncv   = 20 
      if ( n .gt. maxn ) then
         print *, ' ERROR with _NDRV6: N is greater than MAXN '
         go to 9000
      else if ( nev .gt. maxnev ) then
         print *, ' ERROR with _NDRV6: NEV is greater than MAXNEV '
         go to 9000
      else if ( ncv .gt. maxncv ) then
         print *, ' ERROR with _NDRV6: NCV is greater than MAXNCV '
         go to 9000
      end if
      bmat  = 'G'
      which = 'LM'
      sigmar = 4.0D-1
      sigmai = 6.0D-1 
c
c     %----------------------------------------------------%
c     | Construct C = A - (SIGMAR,SIGMAI)*M in complex     |
c     | arithmetic, and factor C in complex arithmetic     |
c     | (using LAPACK subroutine zgttrf). The matrix A is  |
c     | chosen to be the tridiagonal matrix with -2 on the |
c     | subdiagonal, 2 on the diagonal and 3 on the        |
c     | superdiagonal. The matrix M is chosen to be the    |
c     | symmetric tridiagonal matrix with 4 on the         |
c     | diagonal and 1 on the off-diagonals.               |
c     %----------------------------------------------------%
c
      c1 = dcmplx(-2.0D+0-sigmar, -sigmai)
      c2 = dcmplx( 2.0D+0-4.0D+0*sigmar, -4.0D+0*sigmai)
      c3 = dcmplx( 3.0D+0-sigmar, -sigmai)
c
      do 10 j = 1, n-1
         cdl(j) = c1 
         cdd(j) = c2
         cdu(j) = c3
  10  continue 
      cdd(n) = c2 
c 
      call zgttrf(n, cdl, cdd, cdu, cdu2, ipiv, ierr)
      if ( ierr .ne. 0 ) then
         print*, ' '
         print*, ' ERROR with _gttrf in _NDRV6.'
         print*, ' '
         go to 9000
      end if
c
c     %-----------------------------------------------------%
c     | The work array WORKL is used in DNAUPD as           |
c     | workspace.  Its dimension LWORKL is set as          |
c     | illustrated below.  The parameter TOL determines    |
c     | the stopping criterion. If TOL<=0, machine          |
c     | precision is used.  The variable IDO is used for    |
c     | reverse communication, and is initially set to 0.   |
c     | Setting INFO=0 indicates that a random vector is    |
c     | generated in DNAUPD to start the Arnoldi iteration. |
c     %-----------------------------------------------------%
c
      lworkl = 3*ncv**2+6*ncv 
      tol    = zero 
      ido    = 0
      info   = 0
c
c     %---------------------------------------------------%
c     | This program uses exact shift with respect to     |
c     | the current Hessenberg matrix (IPARAM(1) = 1).    |
c     | IPARAM(3) specifies the maximum number of Arnoldi |
c     | iterations allowed.  Mode 3 of DNAUPD is used     |
c     | (IPARAM(7) = 3).  All these options can be        |
c     | changed by the user. For details, see the         |
c     | documentation in DNAUPD.                          |
c     %---------------------------------------------------%
c
      ishfts = 1
      maxitr = 300
      mode   = 3
c
      iparam(1) = ishfts
      iparam(3) = maxitr  
      iparam(7) = mode
c
c     %------------------------------------------%
c     | M A I N   L O O P(Reverse communication) | 
c     %------------------------------------------%
c
 20   continue
c
c        %---------------------------------------------%
c        | Repeatedly call the routine DNAUPD and take | 
c        | actions indicated by parameter IDO until    |
c        | either convergence is indicated or maxitr   |
c        | has been exceeded.                          |
c        %---------------------------------------------%
c
         call dnaupd ( ido, bmat, n, which, nev, tol, resid, 
     &                 ncv, v, ldv, iparam, ipntr, workd, 
     &                 workl, lworkl, info )
c

         if (ido .eq. -1) then
c
c           %------------------------------------------------------------%
c           |                           Perform                          | 
c           | y <--- OP*x = Imaginary_Part{inv[A-(SIGMAR,SIGMAI)*M]*M*x} |
c           | to force starting vector into the range of OP. The user    |
c           | should supply his/her own matrix vector multiplication     |
c           | routine and a complex linear system solver.  The matrix    |
c           | vector multiplication routine should take workd(ipntr(1))  |
c           | as the input. The final result (a real vector) should be   |
c           | returned to workd(ipntr(2)).                               |
c           %------------------------------------------------------------%
c
            call mv (n, workd(ipntr(1)), workd(ipntr(2)))
            do 30 j = 1, n
               ctemp(j) = dcmplx(workd(ipntr(2)+j-1))
  30        continue
c
            call zgttrs('N', n, 1, cdl, cdd, cdu, cdu2, ipiv, 
     &                  ctemp, maxn, ierr)
            if ( ierr .ne. 0 ) then
               print*, ' '
               print*, ' ERROR with _gttrs in _NDRV6.'
               print*, ' '
               go to 9000
            end if 
            do  40 j = 1, n
               workd(ipntr(2)+j-1) = dimag(ctemp(j))
  40        continue
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DNAUPD again. |
c           %-----------------------------------------%
c
            go to 20
c
         else if ( ido .eq. 1) then
c
c           %------------------------------------------------------------%
c           |                          Perform                           |
c           | y <--- OP*x = Imaginary_Part{inv[A-(SIGMAR,SIGMAI)*M]*M*x} |
c           | M*x has been saved in workd(ipntr(3)). The user only need  |
c           | the complex linear system solver here that takes           |
c           | complex[workd(ipntr(3))] as input, and returns the result  |
c           | to workd(ipntr(2)).                                        |
c           %------------------------------------------------------------%
c
            do 50 j = 1,n
               ctemp(j) = dcmplx(workd(ipntr(3)+j-1))
  50        continue
            call zgttrs ('N', n, 1, cdl, cdd, cdu, cdu2, ipiv, 
     &                   ctemp, maxn, ierr)
            if ( ierr .ne. 0 ) then
               print*, ' '
               print*, ' ERROR with _gttrs in _NDRV6.'
               print*, ' '
               go to 9000
            end if 
            do  60 j = 1, n
               workd(ipntr(2)+j-1) = dimag(ctemp(j))
  60        continue
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DNAUPD again. |
c           %-----------------------------------------%
c
            go to 20
c
         else if ( ido .eq. 2) then
c
c           %---------------------------------------------%
c           |          Perform  y <--- M*x                |
c           | Need matrix vector multiplication routine   |
c           | here that takes workd(ipntr(1)) as input    |
c           | and returns the result to workd(ipntr(2)).  |
c           %---------------------------------------------%
c
            call mv (n, workd(ipntr(1)), workd(ipntr(2)))
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DNAUPD again. |
c           %-----------------------------------------%
c
            go to 20
c
         end if
c
c     %-----------------------------------------%
c     | Either we have convergence, or there is |
c     | an error.                               |
c     %-----------------------------------------%
c
c
      if ( info .lt. 0 ) then
c
c        %--------------------------%
c        | Error message, check the |
c        | documentation in DNAUPD. |
c        %--------------------------%
c
         print *, ' '
         print *, ' Error with _naupd, info = ',info
         print *, ' Check the documentation of _naupd.'
         print *, ' ' 
c
      else 
c
c        %-------------------------------------------%
c        | No fatal errors occurred.                 |
c        | Post-Process using DNEUPD.                |
c        |                                           |
c        | Computed eigenvalues may be extracted.    |  
c        |                                           |
c        | Eigenvectors may also be computed now if  |
c        | desired.  (indicated by rvec = .true.)    | 
c        %-------------------------------------------%
c
         rvec = .true.
         call dneupd ( rvec, 'A', select, d, d(1,2), v, ldv,  
     &        sigmar, sigmai, workev, bmat, n, which, nev, tol, 
     &        resid, ncv, v, ldv, iparam, ipntr, workd, 
     &        workl, lworkl, ierr )
c
c        %-----------------------------------------------%
c        | The real part of the eigenvalue is returned   |
c        | in the first column of the two dimensional    |
c        | array D, and the IMAGINARY part is returned   |
c        | in the second column of D.  The corresponding |
c        | eigenvectors are returned in the first NEV    |
c        | columns of the two dimensional array V if     |
c        | requested.  Otherwise, an orthogonal basis    |
c        | for the invariant subspace corresponding to   |
c        | the eigenvalues in D is returned in V.        |
c        %-----------------------------------------------%
c
         if ( ierr .ne. 0) then
c 
c           %------------------------------------%
c           | Error condition:                   |
c           | Check the documentation of DNEUPD. |
c           %------------------------------------%
c
            print *, ' ' 
            print *, ' Error with _neupd, info = ', ierr
            print *, ' Check the documentation of _neupd. '
            print *, ' ' 
c
         else
c
            first = .true.
            nconv =  iparam(5)
            do 70 j=1, nconv
c
c               %-------------------------------------%
c               | Use Rayleigh Quotient to recover    |
c               | eigenvalues of the original problem.|
c               %-------------------------------------%
c
                if ( d(j,2) .eq. zero) then
c
c                  %----------------------------%
c                  | Eigenvalue is real.        | 
c                  | Compute d = x'(Ax)/x'(Mx). |
c                  %----------------------------%
c
                   call av(n, v(1,j), ax )
                   numr = ddot(n, v(1,j), 1, ax, 1)
                   call mv(n, v(1,j), ax )
                   denr = ddot(n, v(1,j), 1, ax, 1)
                   d(j,1) =  numr / denr 
c
                else if (first) then
c
c                  %------------------------%
c                  | Eigenvalue is complex. |
c                  | Compute the first one  |
c                  | of the conjugate pair. |
c                  %------------------------%
c
c                  %----------------%
c                  | Compute x'(Ax) |
c                  %----------------%
c
                   call av(n, v(1,j), ax )
                   numr = ddot(n, v(1,j), 1, ax, 1)
                   numi = ddot(n, v(1,j+1), 1, ax, 1)
                   call av(n, v(1,j+1), ax)
                   numr = numr + ddot(n,v(1,j+1),1,ax,1) 
                   numi = -numi + ddot(n,v(1,j),1,ax,1)
c
c                  %----------------%
c                  | Compute x'(Mx) |
c                  %----------------%
c
                   call mv(n, v(1,j), ax )
                   denr = ddot(n, v(1,j), 1, ax, 1)
                   deni = ddot(n, v(1,j+1), 1, ax, 1)
                   call mv(n, v(1,j+1), ax)
                   denr = denr + ddot(n,v(1,j+1),1,ax,1) 
                   deni = -deni + ddot(n,v(1,j),1, ax,1)
c
c                  %----------------%
c                  | d=x'(Ax)/x'(Mx)|
c                  %----------------%
c
                   d(j,1) = (numr*denr+numi*deni) /
     &                      dlapy2(denr, deni)
                   d(j,2) = (numi*denr-numr*deni) /
     &                      dlapy2(denr, deni)
                   first = .false.
c
                else
c
c                  %------------------------------%
c                  | Get the second eigenvalue of |
c                  | the conjugate pair by taking |
c                  | the conjugate of the last    |
c                  | eigenvalue computed.         |
c                  %------------------------------%
c 
                   d(j,1) = d(j-1,1)
                   d(j,2) = -d(j-1,2)
                   first = .true.
c
                end if
c
  70        continue
c
c           %---------------------------%
c           | Compute the residual norm |
c           |                           |
c           |   ||  A*x - lambda*x ||   |
c           |                           |
c           | for the NCONV accurately  |
c           | computed eigenvalues and  |
c           | eigenvectors.  (iparam(5) |
c           | indicates how many are    |
c           | accurate to the requested |
c           | tolerance)                |
c           %---------------------------%
c
            first = .true.
            nconv = iparam(5)
            do 80 j=1, nconv 
c
               if (d(j,2) .eq. zero)  then
c
c                 %--------------------%
c                 | Ritz value is real |
c                 %--------------------%
c
                  call av(n, v(1,j), ax)
                  call mv(n, v(1,j), mx)
                  call daxpy(n, -d(j,1), mx, 1, ax, 1)
                  d(j,3) = dnrm2(n, ax, 1)
                  d(j,3) = d(j,3) / abs(d(j,1))
c
               else if (first) then
c
c                 %------------------------%
c                 | Ritz value is complex  |
c                 | Residual of one Ritz   |
c                 | value of the conjugate |
c                 | pair is computed.      | 
c                 %------------------------%
c        
                  call av(n, v(1,j), ax)
                  call mv(n, v(1,j), mx)
                  call daxpy(n, -d(j,1), mx, 1, ax, 1)
                  call mv(n, v(1,j+1), mx)
                  call daxpy(n, d(j,2), mx, 1, ax, 1)
                  d(j,3) = dnrm2(n, ax, 1)
                  call av(n, v(1,j+1), ax)
                  call mv(n, v(1,j+1), mx)
                  call daxpy(n, -d(j,1), mx, 1, ax, 1)
                  call mv(n, v(1,j), mx)
                  call daxpy(n, -d(j,2), mx, 1, ax, 1)
                  d(j,3) = dlapy2( d(j,3), dnrm2(n, ax, 1) )
                  d(j,3) = d(j,3) / dlapy2(d(j,1),d(j,2)) 
                  d(j+1,3) = d(j,3)
                  first = .false.
               else
                  first = .true.
               end if
c
  80        continue
c
c           %-----------------------------%
c           | Display computed residuals. |
c           %-----------------------------%
c
            call dmout(6, nconv, 3, d, maxncv, -6,
     &           'Ritz values (Real,Imag) and relative residuals')
c
        end if
c
c       %-------------------------------------------%
c       | Print additional convergence information. |
c       %-------------------------------------------%
c
         if ( info .eq. 1) then
             print *, ' '
             print *, ' Maximum number of iterations reached.'
             print *, ' '
         else if ( info .eq. 3) then
             print *, ' ' 
             print *, ' No shifts could be applied during implicit',
     &                ' Arnoldi update, try increasing NCV.'
             print *, ' '
         end if      
c
         print *, ' '
         print *, ' _NDRV6 '
         print *, ' ====== '
         print *, ' '
         print *, ' Size of the matrix is ', n
         print *, ' The number of Ritz values requested is ', nev
         print *, ' The number of Arnoldi vectors generated',
     &            ' (NCV) is ', ncv
         print *, ' What portion of the spectrum: ', which
         print *, ' The number of converged Ritz values is ', 
     &              nconv 
         print *, ' The number of Implicit Arnoldi update',
     &            ' iterations taken is ', iparam(3)
         print *, ' The number of OP*x is ', iparam(9)
         print *, ' The convergence criterion is ', tol
         print *, ' '
c
      end if
c
c     %---------------------------%
c     | Done with program dndrv6. |
c     %---------------------------%
c
 9000 continue
c
      end
c 
c==========================================================================
c
c     matrix vector multiplication subroutine
c
      subroutine mv (n, v, w)
      integer           n, j
      Double precision
     &                  v(n), w(n), one, four 
      parameter         (one = 1.0D+0, four = 4.0D+0)
c
c     Compute the matrix vector multiplication y<---M*x
c     where M is a n by n symmetric tridiagonal matrix with 4 on the 
c     diagonal, 1 on the subdiagonal and superdiagonal.
c 
      w(1) =  four*v(1) + one*v(2)
      do 10 j = 2,n-1
         w(j) = one*v(j-1) + four*v(j) + one*v(j+1) 
 10   continue 
      w(n) =  one*v(n-1) + four*v(n) 
      return
      end
c------------------------------------------------------------------
      subroutine av (n, v, w)
      integer           n, j
      Double precision            
     &                  v(n), w(n), three, two 
      parameter         (three = 3.0D+0, two = 2.0D+0)
c
c     Compute the matrix vector multiplication y<---A*x
c     where M is a n by n symmetric tridiagonal matrix with 2 on the
c     diagonal, -2 on the subdiagonal and 3 on the superdiagonal.
c
      w(1) =  two*v(1) + three*v(2)
      do 10 j = 2,n-1
         w(j) = -two*v(j-1) + two*v(j) + three*v(j+1)
 10   continue
      w(n) =  -two*v(n-1) + two*v(n)
      return
      end