1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
|
program sndrv6
c
c Simple program to illustrate the idea of reverse communication
c in shift-invert mode for a generalized nonsymmetric eigenvalue problem.
c
c We implement example six of ex-nonsym.doc in DOCUMENTS directory
c
c\Example-6
c
c ... Suppose we want to solve A*x = lambda*B*x in shift-invert mode
c The matrix A is the tridiagonal matrix with 2 on the diagonal,
c -2 on the subdiagonal and 3 on the superdiagonal. The matrix M
c is the tridiagonal matrix with 4 on the diagonal and 1 on the
c off-diagonals.
c ... The shift sigma is a complex number (sigmar, sigmai).
c ... OP = Imaginary_Part{inv[A-(SIGMAR,SIGMAI)*M]*M and B = M.
c ... Use mode 4 of SNAUPD.
c
c\BeginLib
c
c\Routines called:
c snaupd ARPACK reverse communication interface routine.
c sneupd ARPACK routine that returns Ritz values and (optionally)
c Ritz vectors.
c cgttrf LAPACK complex matrix factorization routine.
c cgttrs LAPACK complex linear system solve routine.
c slapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c saxpy Level 1 BLAS that computes y <- alpha*x+y.
c sdot Level 1 BLAS that computes the dot product of two vectors.
c snrm2 Level 1 BLAS that computes the norm of a vector.
c av Matrix vector subroutine that computes A*x.
c mv Matrix vector subroutine that computes M*x.
c
c\Author
c Richard Lehoucq
c Danny Sorensen
c Chao Yang
c Dept. of Computational &
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: ndrv6.F SID: 2.5 DATE OF SID: 10/17/00 RELEASE: 2
c
c\Remarks
c 1. None
c
c\EndLib
c-------------------------------------------------------------------------
c
c %-----------------------------%
c | Define leading dimensions |
c | for all arrays. |
c | MAXN: Maximum dimension |
c | of the A allowed. |
c | MAXNEV: Maximum NEV allowed |
c | MAXNCV: Maximum NCV allowed |
c %-----------------------------%
c
integer maxn, maxnev, maxncv, ldv
parameter (maxn=256, maxnev=10, maxncv=25,
& ldv=maxn )
c
c %--------------%
c | Local Arrays |
c %--------------%
c
integer iparam(11), ipntr(14), ipiv(maxn)
logical select(maxncv)
Real
& ax(maxn), mx(maxn), d(maxncv,3), resid(maxn),
& v(ldv,maxncv), workd(3*maxn),
& workev(3*maxncv),
& workl(3*maxncv*maxncv+6*maxncv)
Complex
& cdd(maxn), cdl(maxn), cdu(maxn),
& cdu2(maxn), ctemp(maxn)
c
c %---------------%
c | Local Scalars |
c %---------------%
c
character bmat*1, which*2
integer ido, n, nev, ncv, lworkl, info, ierr, j,
& nconv, maxitr, ishfts, mode
Real
& tol, numr, numi, denr, deni, sigmar, sigmai
Complex
& c1, c2, c3
logical first, rvec
c
c %-----------------------------%
c | BLAS & LAPACK routines used |
c %-----------------------------%
c
external cgttrf, cgttrs
Real
& sdot, snrm2, slapy2
external sdot, snrm2, slapy2
c
c %------------%
c | Parameters |
c %------------%
c
Real
& zero
parameter (zero = 0.0E+0)
c
c %--------------------%
c | Intrinsic Function |
c %--------------------%
c
intrinsic aimag, cmplx, abs
c
c %-----------------------%
c | Executable statements |
c %-----------------------%
c
c %----------------------------------------------------%
c | The number N is the dimension of the matrix. A |
c | generalized eigenvalue problem is solved (BMAT = |
c | 'G'). NEV is the number of eigenvalues (closest |
c | to the shift (SIGMAR,SIGMAI)) to be approximated. |
c | Since the shift-invert mode is used, WHICH is set |
c | to 'LM'. The user can modify NEV, NCV, SIGMA to |
c | solve problems of different sizes, and to get |
c | different parts of the spectrum. However, The |
c | following conditions must be satisfied: |
c | N <= MAXN, |
c | NEV <= MAXNEV, |
c | NEV + 2 <= NCV <= MAXNCV |
c %----------------------------------------------------%
c
n = 100
nev = 4
ncv = 20
if ( n .gt. maxn ) then
print *, ' ERROR with _NDRV6: N is greater than MAXN '
go to 9000
else if ( nev .gt. maxnev ) then
print *, ' ERROR with _NDRV6: NEV is greater than MAXNEV '
go to 9000
else if ( ncv .gt. maxncv ) then
print *, ' ERROR with _NDRV6: NCV is greater than MAXNCV '
go to 9000
end if
bmat = 'G'
which = 'LM'
sigmar = 4.0E-1
sigmai = 6.0E-1
c
c %----------------------------------------------------%
c | Construct C = A - (SIGMAR,SIGMAI)*M in complex |
c | arithmetic, and factor C in complex arithmetic |
c | (using LAPACK subroutine cgttrf). The matrix A is |
c | chosen to be the tridiagonal matrix with -2 on the |
c | subdiagonal, 2 on the diagonal and 3 on the |
c | superdiagonal. The matrix M is chosen to be the |
c | symmetric tridiagonal matrix with 4 on the |
c | diagonal and 1 on the off-diagonals. |
c %----------------------------------------------------%
c
c1 = cmplx(-2.0E+0-sigmar, -sigmai)
c2 = cmplx( 2.0E+0-4.0E+0*sigmar, -4.0E+0*sigmai)
c3 = cmplx( 3.0E+0-sigmar, -sigmai)
c
do 10 j = 1, n-1
cdl(j) = c1
cdd(j) = c2
cdu(j) = c3
10 continue
cdd(n) = c2
c
call cgttrf(n, cdl, cdd, cdu, cdu2, ipiv, ierr)
if ( ierr .ne. 0 ) then
print*, ' '
print*, ' ERROR with _gttrf in _NDRV6.'
print*, ' '
go to 9000
end if
c
c %-----------------------------------------------------%
c | The work array WORKL is used in SNAUPD as |
c | workspace. Its dimension LWORKL is set as |
c | illustrated below. The parameter TOL determines |
c | the stopping criterion. If TOL<=0, machine |
c | precision is used. The variable IDO is used for |
c | reverse communication, and is initially set to 0. |
c | Setting INFO=0 indicates that a random vector is |
c | generated in SNAUPD to start the Arnoldi iteration. |
c %-----------------------------------------------------%
c
lworkl = 3*ncv**2+6*ncv
tol = zero
ido = 0
info = 0
c
c %---------------------------------------------------%
c | This program uses exact shift with respect to |
c | the current Hessenberg matrix (IPARAM(1) = 1). |
c | IPARAM(3) specifies the maximum number of Arnoldi |
c | iterations allowed. Mode 3 of SNAUPD is used |
c | (IPARAM(7) = 3). All these options can be |
c | changed by the user. For details, see the |
c | documentation in SNAUPD. |
c %---------------------------------------------------%
c
ishfts = 1
maxitr = 300
mode = 3
c
iparam(1) = ishfts
iparam(3) = maxitr
iparam(7) = mode
c
c %------------------------------------------%
c | M A I N L O O P(Reverse communication) |
c %------------------------------------------%
c
20 continue
c
c %---------------------------------------------%
c | Repeatedly call the routine SNAUPD and take |
c | actions indicated by parameter IDO until |
c | either convergence is indicated or maxitr |
c | has been exceeded. |
c %---------------------------------------------%
c
call snaupd ( ido, bmat, n, which, nev, tol, resid,
& ncv, v, ldv, iparam, ipntr, workd,
& workl, lworkl, info )
c
if (ido .eq. -1) then
c
c %------------------------------------------------------------%
c | Perform |
c | y <--- OP*x = Imaginary_Part{inv[A-(SIGMAR,SIGMAI)*M]*M*x} |
c | to force starting vector into the range of OP. The user |
c | should supply his/her own matrix vector multiplication |
c | routine and a complex linear system solver. The matrix |
c | vector multiplication routine should take workd(ipntr(1)) |
c | as the input. The final result (a real vector) should be |
c | returned to workd(ipntr(2)). |
c %------------------------------------------------------------%
c
call mv (n, workd(ipntr(1)), workd(ipntr(2)))
do 30 j = 1, n
ctemp(j) = cmplx(workd(ipntr(2)+j-1))
30 continue
c
call cgttrs('N', n, 1, cdl, cdd, cdu, cdu2, ipiv,
& ctemp, maxn, ierr)
if ( ierr .ne. 0 ) then
print*, ' '
print*, ' ERROR with _gttrs in _NDRV6.'
print*, ' '
go to 9000
end if
do 40 j = 1, n
workd(ipntr(2)+j-1) = aimag(ctemp(j))
40 continue
c
c %-----------------------------------------%
c | L O O P B A C K to call SNAUPD again. |
c %-----------------------------------------%
c
go to 20
c
else if ( ido .eq. 1) then
c
c %------------------------------------------------------------%
c | Perform |
c | y <--- OP*x = Imaginary_Part{inv[A-(SIGMAR,SIGMAI)*M]*M*x} |
c | M*x has been saved in workd(ipntr(3)). The user only need |
c | the complex linear system solver here that takes |
c | complex[workd(ipntr(3))] as input, and returns the result |
c | to workd(ipntr(2)). |
c %------------------------------------------------------------%
c
do 50 j = 1,n
ctemp(j) = cmplx(workd(ipntr(3)+j-1))
50 continue
call cgttrs ('N', n, 1, cdl, cdd, cdu, cdu2, ipiv,
& ctemp, maxn, ierr)
if ( ierr .ne. 0 ) then
print*, ' '
print*, ' ERROR with _gttrs in _NDRV6.'
print*, ' '
go to 9000
end if
do 60 j = 1, n
workd(ipntr(2)+j-1) = aimag(ctemp(j))
60 continue
c
c %-----------------------------------------%
c | L O O P B A C K to call SNAUPD again. |
c %-----------------------------------------%
c
go to 20
c
else if ( ido .eq. 2) then
c
c %---------------------------------------------%
c | Perform y <--- M*x |
c | Need matrix vector multiplication routine |
c | here that takes workd(ipntr(1)) as input |
c | and returns the result to workd(ipntr(2)). |
c %---------------------------------------------%
c
call mv (n, workd(ipntr(1)), workd(ipntr(2)))
c
c %-----------------------------------------%
c | L O O P B A C K to call SNAUPD again. |
c %-----------------------------------------%
c
go to 20
c
end if
c
c %-----------------------------------------%
c | Either we have convergence, or there is |
c | an error. |
c %-----------------------------------------%
c
c
if ( info .lt. 0 ) then
c
c %--------------------------%
c | Error message, check the |
c | documentation in SNAUPD. |
c %--------------------------%
c
print *, ' '
print *, ' Error with _naupd, info = ',info
print *, ' Check the documentation of _naupd.'
print *, ' '
c
else
c
c %-------------------------------------------%
c | No fatal errors occurred. |
c | Post-Process using SNEUPD. |
c | |
c | Computed eigenvalues may be extracted. |
c | |
c | Eigenvectors may also be computed now if |
c | desired. (indicated by rvec = .true.) |
c %-------------------------------------------%
c
rvec = .true.
call sneupd ( rvec, 'A', select, d, d(1,2), v, ldv,
& sigmar, sigmai, workev, bmat, n, which, nev, tol,
& resid, ncv, v, ldv, iparam, ipntr, workd,
& workl, lworkl, ierr )
c
c %-----------------------------------------------%
c | The real part of the eigenvalue is returned |
c | in the first column of the two dimensional |
c | array D, and the IMAGINARY part is returned |
c | in the second column of D. The corresponding |
c | eigenvectors are returned in the first NEV |
c | columns of the two dimensional array V if |
c | requested. Otherwise, an orthogonal basis |
c | for the invariant subspace corresponding to |
c | the eigenvalues in D is returned in V. |
c %-----------------------------------------------%
c
if ( ierr .ne. 0) then
c
c %------------------------------------%
c | Error condition: |
c | Check the documentation of SNEUPD. |
c %------------------------------------%
c
print *, ' '
print *, ' Error with _neupd, info = ', ierr
print *, ' Check the documentation of _neupd. '
print *, ' '
c
else
c
first = .true.
nconv = iparam(5)
do 70 j=1, nconv
c
c %-------------------------------------%
c | Use Rayleigh Quotient to recover |
c | eigenvalues of the original problem.|
c %-------------------------------------%
c
if ( d(j,2) .eq. zero) then
c
c %----------------------------%
c | Eigenvalue is real. |
c | Compute d = x'(Ax)/x'(Mx). |
c %----------------------------%
c
call av(n, v(1,j), ax )
numr = sdot(n, v(1,j), 1, ax, 1)
call mv(n, v(1,j), ax )
denr = sdot(n, v(1,j), 1, ax, 1)
d(j,1) = numr / denr
c
else if (first) then
c
c %------------------------%
c | Eigenvalue is complex. |
c | Compute the first one |
c | of the conjugate pair. |
c %------------------------%
c
c %----------------%
c | Compute x'(Ax) |
c %----------------%
c
call av(n, v(1,j), ax )
numr = sdot(n, v(1,j), 1, ax, 1)
numi = sdot(n, v(1,j+1), 1, ax, 1)
call av(n, v(1,j+1), ax)
numr = numr + sdot(n,v(1,j+1),1,ax,1)
numi = -numi + sdot(n,v(1,j),1,ax,1)
c
c %----------------%
c | Compute x'(Mx) |
c %----------------%
c
call mv(n, v(1,j), ax )
denr = sdot(n, v(1,j), 1, ax, 1)
deni = sdot(n, v(1,j+1), 1, ax, 1)
call mv(n, v(1,j+1), ax)
denr = denr + sdot(n,v(1,j+1),1,ax,1)
deni = -deni + sdot(n,v(1,j),1, ax,1)
c
c %----------------%
c | d=x'(Ax)/x'(Mx)|
c %----------------%
c
d(j,1) = (numr*denr+numi*deni) /
& slapy2(denr, deni)
d(j,2) = (numi*denr-numr*deni) /
& slapy2(denr, deni)
first = .false.
c
else
c
c %------------------------------%
c | Get the second eigenvalue of |
c | the conjugate pair by taking |
c | the conjugate of the last |
c | eigenvalue computed. |
c %------------------------------%
c
d(j,1) = d(j-1,1)
d(j,2) = -d(j-1,2)
first = .true.
c
end if
c
70 continue
c
c %---------------------------%
c | Compute the residual norm |
c | |
c | || A*x - lambda*x || |
c | |
c | for the NCONV accurately |
c | computed eigenvalues and |
c | eigenvectors. (iparam(5) |
c | indicates how many are |
c | accurate to the requested |
c | tolerance) |
c %---------------------------%
c
first = .true.
nconv = iparam(5)
do 80 j=1, nconv
c
if (d(j,2) .eq. zero) then
c
c %--------------------%
c | Ritz value is real |
c %--------------------%
c
call av(n, v(1,j), ax)
call mv(n, v(1,j), mx)
call saxpy(n, -d(j,1), mx, 1, ax, 1)
d(j,3) = snrm2(n, ax, 1)
d(j,3) = d(j,3) / abs(d(j,1))
c
else if (first) then
c
c %------------------------%
c | Ritz value is complex |
c | Residual of one Ritz |
c | value of the conjugate |
c | pair is computed. |
c %------------------------%
c
call av(n, v(1,j), ax)
call mv(n, v(1,j), mx)
call saxpy(n, -d(j,1), mx, 1, ax, 1)
call mv(n, v(1,j+1), mx)
call saxpy(n, d(j,2), mx, 1, ax, 1)
d(j,3) = snrm2(n, ax, 1)
call av(n, v(1,j+1), ax)
call mv(n, v(1,j+1), mx)
call saxpy(n, -d(j,1), mx, 1, ax, 1)
call mv(n, v(1,j), mx)
call saxpy(n, -d(j,2), mx, 1, ax, 1)
d(j,3) = slapy2( d(j,3), snrm2(n, ax, 1) )
d(j,3) = d(j,3) / slapy2(d(j,1),d(j,2))
d(j+1,3) = d(j,3)
first = .false.
else
first = .true.
end if
c
80 continue
c
c %-----------------------------%
c | Display computed residuals. |
c %-----------------------------%
c
call smout(6, nconv, 3, d, maxncv, -6,
& 'Ritz values (Real,Imag) and relative residuals')
c
end if
c
c %-------------------------------------------%
c | Print additional convergence information. |
c %-------------------------------------------%
c
if ( info .eq. 1) then
print *, ' '
print *, ' Maximum number of iterations reached.'
print *, ' '
else if ( info .eq. 3) then
print *, ' '
print *, ' No shifts could be applied during implicit',
& ' Arnoldi update, try increasing NCV.'
print *, ' '
end if
c
print *, ' '
print *, ' _NDRV6 '
print *, ' ====== '
print *, ' '
print *, ' Size of the matrix is ', n
print *, ' The number of Ritz values requested is ', nev
print *, ' The number of Arnoldi vectors generated',
& ' (NCV) is ', ncv
print *, ' What portion of the spectrum: ', which
print *, ' The number of converged Ritz values is ',
& nconv
print *, ' The number of Implicit Arnoldi update',
& ' iterations taken is ', iparam(3)
print *, ' The number of OP*x is ', iparam(9)
print *, ' The convergence criterion is ', tol
print *, ' '
c
end if
c
c %---------------------------%
c | Done with program sndrv6. |
c %---------------------------%
c
9000 continue
c
end
c
c==========================================================================
c
c matrix vector multiplication subroutine
c
subroutine mv (n, v, w)
integer n, j
Real
& v(n), w(n), one, four
parameter (one = 1.0E+0, four = 4.0E+0)
c
c Compute the matrix vector multiplication y<---M*x
c where M is a n by n symmetric tridiagonal matrix with 4 on the
c diagonal, 1 on the subdiagonal and superdiagonal.
c
w(1) = four*v(1) + one*v(2)
do 10 j = 2,n-1
w(j) = one*v(j-1) + four*v(j) + one*v(j+1)
10 continue
w(n) = one*v(n-1) + four*v(n)
return
end
c------------------------------------------------------------------
subroutine av (n, v, w)
integer n, j
Real
& v(n), w(n), three, two
parameter (three = 3.0E+0, two = 2.0E+0)
c
c Compute the matrix vector multiplication y<---A*x
c where M is a n by n symmetric tridiagonal matrix with 2 on the
c diagonal, -2 on the subdiagonal and 3 on the superdiagonal.
c
w(1) = two*v(1) + three*v(2)
do 10 j = 2,n-1
w(j) = -two*v(j-1) + two*v(j) + three*v(j+1)
10 continue
w(n) = -two*v(n-1) + two*v(n)
return
end
|