1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
program dnsimp
c
c
c This example program is intended to illustrate the
c simplest case of using ARPACK in considerable detail.
c This code may be used to understand basic usage of ARPACK
c and as a template for creating an interface to ARPACK.
c
c This code shows how to use ARPACK to find a few eigenvalues
c (lambda) and corresponding eigenvectors (x) for the standard
c eigenvalue problem:
c
c A*x = lambda*x
c
c where A is a n by n real nonsymmetric matrix.
c
c The main points illustrated here are
c
c 1) How to declare sufficient memory to find NEV
c eigenvalues of largest magnitude. Other options
c are available.
c
c 2) Illustration of the reverse communication interface
c needed to utilize the top level ARPACK routine DNAUPD
c that computes the quantities needed to construct
c the desired eigenvalues and eigenvectors(if requested).
c
c 3) How to extract the desired eigenvalues and eigenvectors
c using the ARPACK routine DNEUPD.
c
c The only thing that must be supplied in order to use this
c routine on your problem is to change the array dimensions
c appropriately, to specify WHICH eigenvalues you want to compute
c and to supply a matrix-vector product
c
c w <- Av
c
c in place of the call to AV( ) below.
c
c Once usage of this routine is understood, you may wish to explore
c the other available options to improve convergence, to solve generalized
c problems, etc. Look at the file ex-nonsym.doc in DOCUMENTS directory.
c This codes implements
c
c\Example-1
c ... Suppose we want to solve A*x = lambda*x in regular mode,
c where A is obtained from the standard central difference
c discretization of the convection-diffusion operator
c (Laplacian u) + rho*(du / dx)
c on the unit square, with zero Dirichlet boundary condition.
c
c ... OP = A and B = I.
c ... Assume "call av (nx,x,y)" computes y = A*x
c ... Use mode 1 of DNAUPD.
c
c\BeginLib
c
c\Routines called:
c dnaupd ARPACK reverse communication interface routine.
c dneupd ARPACK routine that returns Ritz values and (optionally)
c Ritz vectors.
c dlapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c daxpy Level 1 BLAS that computes y <- alpha*x+y.
c dnrm2 Level 1 BLAS that computes the norm of a vector.
c av Matrix vector multiplication routine that computes A*x.
c tv Matrix vector multiplication routine that computes T*x,
c where T is a tridiagonal matrix. It is used in routine
c av.
c
c\Author
c Richard Lehoucq
c Danny Sorensen
c Chao Yang
c Dept. of Computational &
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: nsimp.F SID: 2.5 DATE OF SID: 10/17/00 RELEASE: 2
c
c\Remarks
c 1. None
c
c\EndLib
c---------------------------------------------------------------------------
c
c %------------------------------------------------------%
c | Storage Declarations: |
c | |
c | The maximum dimensions for all arrays are |
c | set here to accommodate a problem size of |
c | N .le. MAXN |
c | |
c | NEV is the number of eigenvalues requested. |
c | See specifications for ARPACK usage below. |
c | |
c | NCV is the largest number of basis vectors that will |
c | be used in the Implicitly Restarted Arnoldi |
c | Process. Work per major iteration is |
c | proportional to N*NCV*NCV. |
c | |
c | You must set: |
c | |
c | MAXN: Maximum dimension of the A allowed. |
c | MAXNEV: Maximum NEV allowed. |
c | MAXNCV: Maximum NCV allowed. |
c %------------------------------------------------------%
c
integer maxn, maxnev, maxncv, ldv
parameter (maxn=256, maxnev=12, maxncv=30, ldv=maxn)
c
c %--------------%
c | Local Arrays |
c %--------------%
c
integer iparam(11), ipntr(14)
logical select(maxncv)
Double precision
& ax(maxn), d(maxncv,3), resid(maxn),
& v(ldv,maxncv), workd(3*maxn),
& workev(3*maxncv),
& workl(3*maxncv*maxncv+6*maxncv)
c
c %---------------%
c | Local Scalars |
c %---------------%
c
character bmat*1, which*2
integer ido, n, nx, nev, ncv, lworkl, info, ierr,
& j, ishfts, maxitr, mode1, nconv
Double precision
& tol, sigmar, sigmai
logical first, rvec
c
c %------------%
c | Parameters |
c %------------%
c
Double precision
& zero
parameter (zero = 0.0D+0)
c
c %-----------------------------%
c | BLAS & LAPACK routines used |
c %-----------------------------%
c
Double precision
& dlapy2, dnrm2
external dlapy2, dnrm2, daxpy
c
c %--------------------%
c | Intrinsic function |
c %--------------------%
c
intrinsic abs
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
c %-------------------------------------------------%
c | The following include statement and assignments |
c | initiate trace output from the internal |
c | actions of ARPACK. See debug.doc in the |
c | DOCUMENTS directory for usage. Initially, the |
c | most useful information will be a breakdown of |
c | time spent in the various stages of computation |
c | given by setting mnaupd = 1. |
c %-------------------------------------------------%
c
include 'debug.h'
ndigit = -3
logfil = 6
mnaitr = 0
mnapps = 0
mnaupd = 1
mnaup2 = 0
mneigh = 0
mneupd = 0
c
c %-------------------------------------------------%
c | The following sets dimensions for this problem. |
c %-------------------------------------------------%
c
nx = 10
n = nx*nx
c
c %-----------------------------------------------%
c | |
c | Specifications for ARPACK usage are set |
c | below: |
c | |
c | 1) NEV = 4 asks for 4 eigenvalues to be |
c | computed. |
c | |
c | 2) NCV = 20 sets the length of the Arnoldi |
c | factorization. |
c | |
c | 3) This is a standard problem. |
c | (indicated by bmat = 'I') |
c | |
c | 4) Ask for the NEV eigenvalues of |
c | largest magnitude. |
c | (indicated by which = 'LM') |
c | See documentation in DNAUPD for the |
c | other options SM, LR, SR, LI, SI. |
c | |
c | Note: NEV and NCV must satisfy the following |
c | conditions: |
c | NEV <= MAXNEV |
c | NEV + 2 <= NCV <= MAXNCV |
c | |
c %-----------------------------------------------%
c
nev = 4
ncv = 20
bmat = 'I'
which = 'LM'
c
if ( n .gt. maxn ) then
print *, ' ERROR with _NSIMP: N is greater than MAXN '
go to 9000
else if ( nev .gt. maxnev ) then
print *, ' ERROR with _NSIMP: NEV is greater than MAXNEV '
go to 9000
else if ( ncv .gt. maxncv ) then
print *, ' ERROR with _NSIMP: NCV is greater than MAXNCV '
go to 9000
end if
c
c %-----------------------------------------------------%
c | |
c | Specification of stopping rules and initial |
c | conditions before calling DNAUPD |
c | |
c | TOL determines the stopping criterion. |
c | |
c | Expect |
c | abs(lambdaC - lambdaT) < TOL*abs(lambdaC) |
c | computed true |
c | |
c | If TOL .le. 0, then TOL <- macheps |
c | (machine precision) is used. |
c | |
c | IDO is the REVERSE COMMUNICATION parameter |
c | used to specify actions to be taken on return |
c | from DNAUPD. (see usage below) |
c | |
c | It MUST initially be set to 0 before the first |
c | call to DNAUPD. |
c | |
c | INFO on entry specifies starting vector information |
c | and on return indicates error codes |
c | |
c | Initially, setting INFO=0 indicates that a |
c | random starting vector is requested to |
c | start the ARNOLDI iteration. Setting INFO to |
c | a nonzero value on the initial call is used |
c | if you want to specify your own starting |
c | vector (This vector must be placed in RESID). |
c | |
c | The work array WORKL is used in DNAUPD as |
c | workspace. Its dimension LWORKL is set as |
c | illustrated below. |
c | |
c %-----------------------------------------------------%
c
lworkl = 3*ncv**2+6*ncv
tol = zero
ido = 0
info = 0
c
c %---------------------------------------------------%
c | Specification of Algorithm Mode: |
c | |
c | This program uses the exact shift strategy |
c | (indicated by setting IPARAM(1) = 1). |
c | IPARAM(3) specifies the maximum number of Arnoldi |
c | iterations allowed. Mode 1 of DNAUPD is used |
c | (IPARAM(7) = 1). All these options can be changed |
c | by the user. For details see the documentation in |
c | DNAUPD. |
c %---------------------------------------------------%
c
ishfts = 1
maxitr = 300
mode1 = 1
c
iparam(1) = ishfts
c
iparam(3) = maxitr
c
iparam(7) = mode1
c
c %-------------------------------------------%
c | M A I N L O O P (Reverse communication) |
c %-------------------------------------------%
c
10 continue
c
c %---------------------------------------------%
c | Repeatedly call the routine DNAUPD and take |
c | actions indicated by parameter IDO until |
c | either convergence is indicated or maxitr |
c | has been exceeded. |
c %---------------------------------------------%
c
call dnaupd ( ido, bmat, n, which, nev, tol, resid, ncv,
& v, ldv, iparam, ipntr, workd, workl, lworkl,
& info )
c
if (ido .eq. -1 .or. ido .eq. 1) then
c
c %-------------------------------------------%
c | Perform matrix vector multiplication |
c | y <--- Op*x |
c | The user should supply his/her own |
c | matrix vector multiplication routine here |
c | that takes workd(ipntr(1)) as the input |
c | vector, and return the matrix vector |
c | product to workd(ipntr(2)). |
c %-------------------------------------------%
c
call av (nx, workd(ipntr(1)), workd(ipntr(2)))
c
c %-----------------------------------------%
c | L O O P B A C K to call DNAUPD again. |
c %-----------------------------------------%
c
go to 10
c
endif
c
c %----------------------------------------%
c | Either we have convergence or there is |
c | an error. |
c %----------------------------------------%
c
if ( info .lt. 0 ) then
c
c %--------------------------%
c | Error message, check the |
c | documentation in DNAUPD. |
c %--------------------------%
c
print *, ' '
print *, ' Error with _naupd, info = ',info
print *, ' Check the documentation of _naupd'
print *, ' '
c
else
c
c %-------------------------------------------%
c | No fatal errors occurred. |
c | Post-Process using DNEUPD. |
c | |
c | Computed eigenvalues may be extracted. |
c | |
c | Eigenvectors may be also computed now if |
c | desired. (indicated by rvec = .true.) |
c | |
c | The routine DNEUPD now called to do this |
c | post processing (Other modes may require |
c | more complicated post processing than |
c | mode1,) |
c | |
c %-------------------------------------------%
c
rvec = .true.
c
call dneupd ( rvec, 'A', select, d, d(1,2), v, ldv,
& sigmar, sigmai, workev, bmat, n, which, nev, tol,
& resid, ncv, v, ldv, iparam, ipntr, workd, workl,
& lworkl, ierr )
c
c %------------------------------------------------%
c | The real parts of the eigenvalues are returned |
c | in the first column of the two dimensional |
c | array D, and the IMAGINARY part are returned |
c | in the second column of D. The corresponding |
c | eigenvectors are returned in the first |
c | NCONV (= IPARAM(5)) columns of the two |
c | dimensional array V if requested. Otherwise, |
c | an orthogonal basis for the invariant subspace |
c | corresponding to the eigenvalues in D is |
c | returned in V. |
c %------------------------------------------------%
c
if ( ierr .ne. 0) then
c
c %------------------------------------%
c | Error condition: |
c | Check the documentation of DNEUPD. |
c %------------------------------------%
c
print *, ' '
print *, ' Error with _neupd, info = ', ierr
print *, ' Check the documentation of _neupd. '
print *, ' '
c
else
c
first = .true.
nconv = iparam(5)
do 20 j=1, nconv
c
c %---------------------------%
c | Compute the residual norm |
c | |
c | || A*x - lambda*x || |
c | |
c | for the NCONV accurately |
c | computed eigenvalues and |
c | eigenvectors. (IPARAM(5) |
c | indicates how many are |
c | accurate to the requested |
c | tolerance) |
c %---------------------------%
c
if (d(j,2) .eq. zero) then
c
c %--------------------%
c | Ritz value is real |
c %--------------------%
c
call av(nx, v(1,j), ax)
call daxpy(n, -d(j,1), v(1,j), 1, ax, 1)
d(j,3) = dnrm2(n, ax, 1)
d(j,3) = d(j,3) / abs(d(j,1))
c
else if (first) then
c
c %------------------------%
c | Ritz value is complex. |
c | Residual of one Ritz |
c | value of the conjugate |
c | pair is computed. |
c %------------------------%
c
call av(nx, v(1,j), ax)
call daxpy(n, -d(j,1), v(1,j), 1, ax, 1)
call daxpy(n, d(j,2), v(1,j+1), 1, ax, 1)
d(j,3) = dnrm2(n, ax, 1)
call av(nx, v(1,j+1), ax)
call daxpy(n, -d(j,2), v(1,j), 1, ax, 1)
call daxpy(n, -d(j,1), v(1,j+1), 1, ax, 1)
d(j,3) = dlapy2( d(j,3), dnrm2(n, ax, 1) )
d(j,3) = d(j,3) / dlapy2(d(j,1),d(j,2))
d(j+1,3) = d(j,3)
first = .false.
else
first = .true.
end if
c
20 continue
c
c %-----------------------------%
c | Display computed residuals. |
c %-----------------------------%
c
call dmout(6, nconv, 3, d, maxncv, -6,
& 'Ritz values (Real, Imag) and residual residuals')
end if
c
c %-------------------------------------------%
c | Print additional convergence information. |
c %-------------------------------------------%
c
if ( info .eq. 1) then
print *, ' '
print *, ' Maximum number of iterations reached.'
print *, ' '
else if ( info .eq. 3) then
print *, ' '
print *, ' No shifts could be applied during implicit',
& ' Arnoldi update, try increasing NCV.'
print *, ' '
end if
c
print *, ' '
print *, ' _NSIMP '
print *, ' ====== '
print *, ' '
print *, ' Size of the matrix is ', n
print *, ' The number of Ritz values requested is ', nev
print *, ' The number of Arnoldi vectors generated',
& ' (NCV) is ', ncv
print *, ' What portion of the spectrum: ', which
print *, ' The number of converged Ritz values is ',
& nconv
print *, ' The number of Implicit Arnoldi update',
& ' iterations taken is ', iparam(3)
print *, ' The number of OP*x is ', iparam(9)
print *, ' The convergence criterion is ', tol
print *, ' '
c
end if
c
c %---------------------------%
c | Done with program dnsimp. |
c %---------------------------%
c
9000 continue
c
end
c
c==========================================================================
c
c matrix vector subroutine
c
c The matrix used is the 2 dimensional convection-diffusion
c operator discretized using central difference.
c
subroutine av (nx, v, w)
integer nx, j, lo
Double precision
& v(nx*nx), w(nx*nx), one, h2
parameter (one = 1.0D+0)
external daxpy, tv
c
c Computes w <--- OP*v, where OP is the nx*nx by nx*nx block
c tridiagonal matrix
c
c | T -I |
c |-I T -I |
c OP = | -I T |
c | ... -I|
c | -I T|
c
c derived from the standard central difference discretization
c of the 2 dimensional convection-diffusion operator
c (Laplacian u) + rho*(du/dx) on a unit square with zero boundary
c condition.
c
c When rho*h/2 <= 1, the discrete convection-diffusion operator
c has real eigenvalues. When rho*h/2 > 1, it has complex
c eigenvalues.
c
c The subroutine TV is called to computed y<---T*x.
c
c
h2 = one / dble((nx+1)*(nx+1))
c
call tv(nx,v(1),w(1))
call daxpy(nx, -one/h2, v(nx+1), 1, w(1), 1)
c
do 10 j = 2, nx-1
lo = (j-1)*nx
call tv(nx, v(lo+1), w(lo+1))
call daxpy(nx, -one/h2, v(lo-nx+1), 1, w(lo+1), 1)
call daxpy(nx, -one/h2, v(lo+nx+1), 1, w(lo+1), 1)
10 continue
c
lo = (nx-1)*nx
call tv(nx, v(lo+1), w(lo+1))
call daxpy(nx, -one/h2, v(lo-nx+1), 1, w(lo+1), 1)
c
return
end
c=========================================================================
subroutine tv (nx, x, y)
c
integer nx, j
Double precision
& x(nx), y(nx), h, dd, dl, du, h2
c
Double precision
& one, rho
parameter (one = 1.0D+0, rho = 1.0D+2)
c
c Compute the matrix vector multiplication y<---T*x
c where T is a nx by nx tridiagonal matrix with DD on the
c diagonal, DL on the subdiagonal, and DU on the superdiagonal.
c
c When rho*h/2 <= 1, the discrete convection-diffusion operator
c has real eigenvalues. When rho*h/2 > 1, it has complex
c eigenvalues.
c
h = one / dble(nx+1)
h2 = h*h
dd = 4.0D+0 / h2
dl = -one/h2 - 5.0D-1*rho/h
du = -one/h2 + 5.0D-1*rho/h
c
y(1) = dd*x(1) + du*x(2)
do 10 j = 2,nx-1
y(j) = dl*x(j-1) + dd*x(j) + du*x(j+1)
10 continue
y(nx) = dl*x(nx-1) + dd*x(nx)
return
end
|