File: dnsimp.f

package info (click to toggle)
arpack 2.1-8
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k, sarge
  • size: 12,156 kB
  • ctags: 14,653
  • sloc: fortran: 49,617; makefile: 465; ansic: 39; sh: 10
file content (592 lines) | stat: -rw-r--r-- 22,434 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
      program dnsimp
c
c
c     This example program is intended to illustrate the
c     simplest case of using ARPACK in considerable detail.
c     This code may be used to understand basic usage of ARPACK
c     and as a template for creating an interface to ARPACK.
c
c     This code shows how to use ARPACK to find a few eigenvalues
c     (lambda) and corresponding eigenvectors (x) for the standard
c     eigenvalue problem:
c
c                        A*x = lambda*x
c
c     where A is a n by n real nonsymmetric matrix.
c
c     The main points illustrated here are
c
c        1) How to declare sufficient memory to find NEV
c           eigenvalues of largest magnitude.  Other options
c           are available.
c
c        2) Illustration of the reverse communication interface
c           needed to utilize the top level ARPACK routine DNAUPD
c           that computes the quantities needed to construct
c           the desired eigenvalues and eigenvectors(if requested).
c
c        3) How to extract the desired eigenvalues and eigenvectors
c           using the ARPACK routine DNEUPD.
c
c     The only thing that must be supplied in order to use this
c     routine on your problem is to change the array dimensions
c     appropriately, to specify WHICH eigenvalues you want to compute
c     and to supply a matrix-vector product
c
c                         w <-  Av
c
c     in place of the call to AV( )  below.
c
c     Once usage of this routine is understood, you may wish to explore
c     the other available options to improve convergence, to solve generalized
c     problems, etc.  Look at the file ex-nonsym.doc in DOCUMENTS directory.
c     This codes implements
c
c\Example-1
c     ... Suppose we want to solve A*x = lambda*x in regular mode,
c         where A is obtained from the standard central difference
c         discretization of the convection-diffusion operator 
c                 (Laplacian u) + rho*(du / dx)
c         on the unit square, with zero Dirichlet boundary condition.
c
c     ... OP = A  and  B = I.
c     ... Assume "call av (nx,x,y)" computes y = A*x
c     ... Use mode 1 of DNAUPD.
c
c\BeginLib
c
c\Routines called:
c     dnaupd  ARPACK reverse communication interface routine.
c     dneupd  ARPACK routine that returns Ritz values and (optionally)
c             Ritz vectors.
c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
c     daxpy   Level 1 BLAS that computes y <- alpha*x+y.
c     dnrm2   Level 1 BLAS that computes the norm of a vector.
c     av      Matrix vector multiplication routine that computes A*x.
c     tv      Matrix vector multiplication routine that computes T*x, 
c             where T is a tridiagonal matrix.  It is used in routine
c             av.
c
c\Author
c     Richard Lehoucq
c     Danny Sorensen
c     Chao Yang
c     Dept. of Computational &
c     Applied Mathematics
c     Rice University
c     Houston, Texas
c
c\SCCS Information: @(#)
c FILE: nsimp.F   SID: 2.5   DATE OF SID: 10/17/00   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c---------------------------------------------------------------------------
c
c     %------------------------------------------------------%
c     | Storage Declarations:                                |
c     |                                                      |
c     | The maximum dimensions for all arrays are            |
c     | set here to accommodate a problem size of            |
c     | N .le. MAXN                                          |
c     |                                                      |
c     | NEV is the number of eigenvalues requested.          |
c     |     See specifications for ARPACK usage below.       |
c     |                                                      |
c     | NCV is the largest number of basis vectors that will |
c     |     be used in the Implicitly Restarted Arnoldi      |
c     |     Process.  Work per major iteration is            |
c     |     proportional to N*NCV*NCV.                       |
c     |                                                      |
c     | You must set:                                        |
c     |                                                      |
c     | MAXN:   Maximum dimension of the A allowed.          |
c     | MAXNEV: Maximum NEV allowed.                         |
c     | MAXNCV: Maximum NCV allowed.                         |
c     %------------------------------------------------------%
c
      integer           maxn, maxnev, maxncv, ldv
      parameter         (maxn=256, maxnev=12, maxncv=30, ldv=maxn)
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
      integer           iparam(11), ipntr(14)
      logical           select(maxncv)
      Double precision
     &                  ax(maxn), d(maxncv,3), resid(maxn), 
     &                  v(ldv,maxncv), workd(3*maxn), 
     &                  workev(3*maxncv), 
     &                  workl(3*maxncv*maxncv+6*maxncv)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      character         bmat*1, which*2
      integer           ido, n, nx, nev, ncv, lworkl, info, ierr,
     &                  j, ishfts, maxitr, mode1, nconv
      Double precision
     &                  tol, sigmar, sigmai
      logical           first, rvec
c
c     %------------%
c     | Parameters |
c     %------------%
c
      Double precision
     &                  zero
      parameter         (zero = 0.0D+0)
c
c     %-----------------------------%
c     | BLAS & LAPACK routines used |
c     %-----------------------------%
c
      Double precision
     &                  dlapy2, dnrm2
      external          dlapy2, dnrm2, daxpy 
c
c     %--------------------%
c     | Intrinsic function |
c     %--------------------%
c
      intrinsic         abs
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c
c     %-------------------------------------------------%
c     | The following include statement and assignments |
c     | initiate trace output from the internal         |
c     | actions of ARPACK.  See debug.doc in the        |
c     | DOCUMENTS directory for usage.  Initially, the  |
c     | most useful information will be a breakdown of  |
c     | time spent in the various stages of computation |
c     | given by setting mnaupd = 1.                    |
c     %-------------------------------------------------%
c
      include 'debug.h'
      ndigit = -3
      logfil = 6
      mnaitr = 0
      mnapps = 0
      mnaupd = 1
      mnaup2 = 0
      mneigh = 0
      mneupd = 0
c
c     %-------------------------------------------------%
c     | The following sets dimensions for this problem. |
c     %-------------------------------------------------%
c
      nx    = 10 
      n     = nx*nx 
c
c     %-----------------------------------------------%
c     |                                               |
c     | Specifications for ARPACK usage are set       |
c     | below:                                        |
c     |                                               |
c     |    1) NEV = 4  asks for 4 eigenvalues to be   |
c     |       computed.                               |
c     |                                               |
c     |    2) NCV = 20 sets the length of the Arnoldi |
c     |       factorization.                          |
c     |                                               |
c     |    3) This is a standard problem.             |
c     |         (indicated by bmat  = 'I')            |
c     |                                               |
c     |    4) Ask for the NEV eigenvalues of          |
c     |       largest magnitude.                      |
c     |         (indicated by which = 'LM')           |
c     |       See documentation in DNAUPD for the     |
c     |       other options SM, LR, SR, LI, SI.       |
c     |                                               |
c     | Note: NEV and NCV must satisfy the following  |
c     | conditions:                                   |
c     |              NEV <= MAXNEV                    |
c     |          NEV + 2 <= NCV <= MAXNCV             |
c     |                                               |
c     %-----------------------------------------------%
c
      nev   = 4
      ncv   = 20
      bmat  = 'I'
      which = 'LM'
c
      if ( n .gt. maxn ) then
         print *, ' ERROR with _NSIMP: N is greater than MAXN '
         go to 9000
      else if ( nev .gt. maxnev ) then
         print *, ' ERROR with _NSIMP: NEV is greater than MAXNEV '
         go to 9000
      else if ( ncv .gt. maxncv ) then
         print *, ' ERROR with _NSIMP: NCV is greater than MAXNCV '
         go to 9000
      end if
c
c     %-----------------------------------------------------%
c     |                                                     |
c     | Specification of stopping rules and initial         |
c     | conditions before calling DNAUPD                    |
c     |                                                     |
c     | TOL  determines the stopping criterion.             |
c     |                                                     |
c     |      Expect                                         |
c     |           abs(lambdaC - lambdaT) < TOL*abs(lambdaC) |
c     |               computed   true                       |
c     |                                                     |
c     |      If TOL .le. 0,  then TOL <- macheps            |
c     |           (machine precision) is used.              |
c     |                                                     |
c     | IDO  is the REVERSE COMMUNICATION parameter         |
c     |      used to specify actions to be taken on return  |
c     |      from DNAUPD. (see usage below)                 |
c     |                                                     |
c     |      It MUST initially be set to 0 before the first |
c     |      call to DNAUPD.                                |
c     |                                                     |
c     | INFO on entry specifies starting vector information |
c     |      and on return indicates error codes            |
c     |                                                     |
c     |      Initially, setting INFO=0 indicates that a     |
c     |      random starting vector is requested to         |
c     |      start the ARNOLDI iteration.  Setting INFO to  |
c     |      a nonzero value on the initial call is used    |
c     |      if you want to specify your own starting       |
c     |      vector (This vector must be placed in RESID).  |
c     |                                                     |
c     | The work array WORKL is used in DNAUPD as           |
c     | workspace.  Its dimension LWORKL is set as          |
c     | illustrated below.                                  |
c     |                                                     |
c     %-----------------------------------------------------%
c
      lworkl  = 3*ncv**2+6*ncv 
      tol    = zero 
      ido    = 0
      info   = 0
c
c     %---------------------------------------------------%
c     | Specification of Algorithm Mode:                  |
c     |                                                   |
c     | This program uses the exact shift strategy        |
c     | (indicated by setting IPARAM(1) = 1).             |
c     | IPARAM(3) specifies the maximum number of Arnoldi |
c     | iterations allowed.  Mode 1 of DNAUPD is used     |
c     | (IPARAM(7) = 1). All these options can be changed |
c     | by the user. For details see the documentation in |
c     | DNAUPD.                                           |
c     %---------------------------------------------------%
c
      ishfts = 1
      maxitr = 300
      mode1 = 1
c
      iparam(1) = ishfts
c
      iparam(3) = maxitr
c
      iparam(7) = mode1
c
c     %-------------------------------------------%
c     | M A I N   L O O P (Reverse communication) | 
c     %-------------------------------------------%
c
 10   continue
c
c        %---------------------------------------------%
c        | Repeatedly call the routine DNAUPD and take |
c        | actions indicated by parameter IDO until    |
c        | either convergence is indicated or maxitr   |
c        | has been exceeded.                          |
c        %---------------------------------------------%
c
         call dnaupd ( ido, bmat, n, which, nev, tol, resid, ncv, 
     &                 v, ldv, iparam, ipntr, workd, workl, lworkl, 
     &                 info )
c
         if (ido .eq. -1 .or. ido .eq. 1) then
c
c           %-------------------------------------------%
c           | Perform matrix vector multiplication      |
c           |                y <--- Op*x                |
c           | The user should supply his/her own        |
c           | matrix vector multiplication routine here |
c           | that takes workd(ipntr(1)) as the input   |
c           | vector, and return the matrix vector      |
c           | product to workd(ipntr(2)).               | 
c           %-------------------------------------------%
c
            call av (nx, workd(ipntr(1)), workd(ipntr(2)))
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DNAUPD again. |
c           %-----------------------------------------%
c
            go to 10
c
         endif
c
c     %----------------------------------------%
c     | Either we have convergence or there is |
c     | an error.                              |
c     %----------------------------------------%
c
      if ( info .lt. 0 ) then
c
c        %--------------------------%
c        | Error message, check the |
c        | documentation in DNAUPD. |
c        %--------------------------%
c
         print *, ' '
         print *, ' Error with _naupd, info = ',info
         print *, ' Check the documentation of _naupd'
         print *, ' '
c
      else 
c
c        %-------------------------------------------%
c        | No fatal errors occurred.                 |
c        | Post-Process using DNEUPD.                |
c        |                                           |
c        | Computed eigenvalues may be extracted.    |
c        |                                           |
c        | Eigenvectors may be also computed now if  |
c        | desired.  (indicated by rvec = .true.)    |
c        |                                           |
c        | The routine DNEUPD now called to do this  |
c        | post processing (Other modes may require  |
c        | more complicated post processing than     |
c        | mode1,)                                   |
c        |                                           |
c        %-------------------------------------------%
c
         rvec = .true.
c
         call dneupd ( rvec, 'A', select, d, d(1,2), v, ldv, 
     &        sigmar, sigmai, workev, bmat, n, which, nev, tol, 
     &        resid, ncv, v, ldv, iparam, ipntr, workd, workl,
     &        lworkl, ierr )
c
c        %------------------------------------------------%
c        | The real parts of the eigenvalues are returned |
c        | in the first column of the two dimensional     |
c        | array D, and the IMAGINARY part are returned   |
c        | in the second column of D.  The corresponding  |
c        | eigenvectors are returned in the first         |
c        | NCONV (= IPARAM(5)) columns of the two         |
c        | dimensional array V if requested.  Otherwise,  |
c        | an orthogonal basis for the invariant subspace |
c        | corresponding to the eigenvalues in D is       |
c        | returned in V.                                 |
c        %------------------------------------------------%
c
         if ( ierr .ne. 0) then
c
c           %------------------------------------%
c           | Error condition:                   |
c           | Check the documentation of DNEUPD. |
c           %------------------------------------%
c
            print *, ' '
            print *, ' Error with _neupd, info = ', ierr
            print *, ' Check the documentation of _neupd. '
            print *, ' '
c
         else
c
            first = .true.
            nconv =  iparam(5)
            do 20 j=1, nconv
c
c              %---------------------------%
c              | Compute the residual norm |
c              |                           |
c              |   ||  A*x - lambda*x ||   |
c              |                           |
c              | for the NCONV accurately  |
c              | computed eigenvalues and  |
c              | eigenvectors.  (IPARAM(5) |
c              | indicates how many are    |
c              | accurate to the requested |
c              | tolerance)                |
c              %---------------------------%
c
               if (d(j,2) .eq. zero)  then
c
c                 %--------------------%
c                 | Ritz value is real |
c                 %--------------------%
c
                  call av(nx, v(1,j), ax)
                  call daxpy(n, -d(j,1), v(1,j), 1, ax, 1)
                  d(j,3) = dnrm2(n, ax, 1)
                  d(j,3) = d(j,3) / abs(d(j,1))
c
               else if (first) then
c
c                 %------------------------%
c                 | Ritz value is complex. |
c                 | Residual of one Ritz   |
c                 | value of the conjugate |
c                 | pair is computed.      |
c                 %------------------------%
c
                  call av(nx, v(1,j), ax)
                  call daxpy(n, -d(j,1), v(1,j), 1, ax, 1)
                  call daxpy(n, d(j,2), v(1,j+1), 1, ax, 1)
                  d(j,3) = dnrm2(n, ax, 1)
                  call av(nx, v(1,j+1), ax)
                  call daxpy(n, -d(j,2), v(1,j), 1, ax, 1)
                  call daxpy(n, -d(j,1), v(1,j+1), 1, ax, 1)
                  d(j,3) = dlapy2( d(j,3), dnrm2(n, ax, 1) )
                  d(j,3) = d(j,3) / dlapy2(d(j,1),d(j,2))
                  d(j+1,3) = d(j,3)
                  first = .false.
               else
                  first = .true.
               end if
c
 20         continue
c
c           %-----------------------------%
c           | Display computed residuals. |
c           %-----------------------------%
c
            call dmout(6, nconv, 3, d, maxncv, -6,
     &           'Ritz values (Real, Imag) and residual residuals')
         end if
c
c        %-------------------------------------------%
c        | Print additional convergence information. |
c        %-------------------------------------------%
c
         if ( info .eq. 1) then
             print *, ' '
             print *, ' Maximum number of iterations reached.'
             print *, ' '
         else if ( info .eq. 3) then
             print *, ' ' 
             print *, ' No shifts could be applied during implicit',
     &                ' Arnoldi update, try increasing NCV.'
             print *, ' '
         end if      
c
         print *, ' '
         print *, ' _NSIMP '
         print *, ' ====== '
         print *, ' '
         print *, ' Size of the matrix is ', n
         print *, ' The number of Ritz values requested is ', nev
         print *, ' The number of Arnoldi vectors generated',
     &            ' (NCV) is ', ncv
         print *, ' What portion of the spectrum: ', which
         print *, ' The number of converged Ritz values is ', 
     &              nconv 
         print *, ' The number of Implicit Arnoldi update',
     &            ' iterations taken is ', iparam(3)
         print *, ' The number of OP*x is ', iparam(9)
         print *, ' The convergence criterion is ', tol
         print *, ' '
c
      end if
c
c     %---------------------------%
c     | Done with program dnsimp. |
c     %---------------------------%
c
 9000 continue
c
      end
c 
c==========================================================================
c
c     matrix vector subroutine
c
c     The matrix used is the 2 dimensional convection-diffusion 
c     operator discretized using central difference.
c
      subroutine av (nx, v, w)
      integer           nx, j, lo
      Double precision         
     &                  v(nx*nx), w(nx*nx), one, h2
      parameter         (one = 1.0D+0)
      external          daxpy, tv
c
c     Computes w <--- OP*v, where OP is the nx*nx by nx*nx block 
c     tridiagonal matrix
c
c                  | T -I          | 
c                  |-I  T -I       |
c             OP = |   -I  T       |
c                  |        ...  -I|
c                  |           -I T|
c
c     derived from the standard central difference discretization 
c     of the 2 dimensional convection-diffusion operator 
c     (Laplacian u) + rho*(du/dx) on a unit square with zero boundary 
c     condition.
c
c     When rho*h/2 <= 1, the discrete convection-diffusion operator 
c     has real eigenvalues.  When rho*h/2 > 1, it has complex 
c     eigenvalues.
c
c     The subroutine TV is called to computed y<---T*x.
c
c
      h2 = one / dble((nx+1)*(nx+1))
c
      call tv(nx,v(1),w(1))
      call daxpy(nx, -one/h2, v(nx+1), 1, w(1), 1)
c
      do 10 j = 2, nx-1
         lo = (j-1)*nx
         call tv(nx, v(lo+1), w(lo+1))
         call daxpy(nx, -one/h2, v(lo-nx+1), 1, w(lo+1), 1)
         call daxpy(nx, -one/h2, v(lo+nx+1), 1, w(lo+1), 1)
  10  continue 
c
      lo = (nx-1)*nx
      call tv(nx, v(lo+1), w(lo+1))
      call daxpy(nx, -one/h2, v(lo-nx+1), 1, w(lo+1), 1)
c
      return
      end
c=========================================================================
      subroutine tv (nx, x, y)
c
      integer           nx, j 
      Double precision
     &                  x(nx), y(nx), h, dd, dl, du, h2
c
      Double precision
     &                  one, rho
      parameter         (one = 1.0D+0, rho = 1.0D+2)
c
c     Compute the matrix vector multiplication y<---T*x
c     where T is a nx by nx tridiagonal matrix with DD on the 
c     diagonal, DL on the subdiagonal, and DU on the superdiagonal.
c
c     When rho*h/2 <= 1, the discrete convection-diffusion operator 
c     has real eigenvalues.  When rho*h/2 > 1, it has complex 
c     eigenvalues.
c
      h   = one / dble(nx+1)
      h2  = h*h
      dd  = 4.0D+0 / h2 
      dl  = -one/h2 - 5.0D-1*rho/h
      du  = -one/h2 + 5.0D-1*rho/h
c 
      y(1) =  dd*x(1) + du*x(2)
      do 10 j = 2,nx-1
         y(j) = dl*x(j-1) + dd*x(j) + du*x(j+1) 
 10   continue 
      y(nx) =  dl*x(nx-1) + dd*x(nx) 
      return
      end