File: dsvd.f

package info (click to toggle)
arpack 2.1-8
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k, sarge
  • size: 12,156 kB
  • ctags: 14,653
  • sloc: fortran: 49,617; makefile: 465; ansic: 39; sh: 10
file content (594 lines) | stat: -rw-r--r-- 21,892 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
      program dsvd
c
c     This example program is intended to illustrate the 
c     the use of ARPACK to compute the Singular Value Decomposition.
c   
c     This code shows how to use ARPACK to find a few of the
c     largest singular values(sigma) and corresponding right singular 
c     vectors (v) for the the matrix A by solving the symmetric problem:
c          
c                        (A'*A)*v = sigma*v
c 
c     where A is an m by n real matrix.
c
c     This code may be easily modified to estimate the 2-norm
c     condition number  largest(sigma)/smallest(sigma) by setting
c     which = 'BE' below.  This will ask for a few of the smallest
c     and a few of the largest singular values simultaneously.
c     The condition number could then be estimated by taking
c     the ratio of the largest and smallest singular values.
c
c     This formulation is appropriate when  m  .ge.  n.
c     Reverse the roles of A and A' in the case that  m .le. n.
c
c     The main points illustrated here are 
c
c        1) How to declare sufficient memory to find NEV 
c           largest singular values of A .  
c
c        2) Illustration of the reverse communication interface 
c           needed to utilize the top level ARPACK routine DSAUPD 
c           that computes the quantities needed to construct
c           the desired singular values and vectors(if requested).
c
c        3) How to extract the desired singular values and vectors
c           using the ARPACK routine DSEUPD.
c
c        4) How to construct the left singular vectors U from the 
c           right singular vectors V to obtain the decomposition
c
c                        A*V = U*S
c
c           where S = diag(sigma_1, sigma_2, ..., sigma_k).
c
c     The only thing that must be supplied in order to use this
c     routine on your problem is to change the array dimensions 
c     appropriately, to specify WHICH singular values you want to 
c     compute and to supply a the matrix-vector products 
c
c                         w <-  Ax
c                         y <-  A'w
c
c     in place of the calls  to AV( ) and ATV( ) respectively below.  
c
c     Further documentation is available in the header of DSAUPD
c     which may be found in the SRC directory.
c
c     This codes implements
c
c\Example-1
c     ... Suppose we want to solve A'A*v = sigma*v in regular mode,
c         where A is derived from the simplest finite difference 
c         discretization of the 2-dimensional kernel  K(s,t)dt  where
c
c                 K(s,t) =  s(t-1)   if 0 .le. s .le. t .le. 1,
c                           t(s-1)   if 0 .le. t .lt. s .le. 1. 
c
c         See subroutines AV  and ATV for details.
c     ... OP = A'*A  and  B = I.
c     ... Assume "call av (n,x,y)" computes y = A*x
c     ... Assume "call atv (n,y,w)" computes w = A'*y
c     ... Assume exact shifts are used
c     ...
c
c\BeginLib
c
c\Routines called:
c     dsaupd  ARPACK reverse communication interface routine.
c     dseupd  ARPACK routine that returns Ritz values and (optionally)
c             Ritz vectors.
c     dnrm2   Level 1 BLAS that computes the norm of a vector.
c     daxpy   Level 1 BLAS that computes y <- alpha*x+y.
c     dscal   Level 1 BLAS thst computes x <- x*alpha.
c     dcopy   Level 1 BLAS thst computes y <- x.
c
c\Author
c     Richard Lehoucq
c     Danny Sorensen
c     Chao Yang
c     Dept. of Computational &
c     Applied Mathematics
c     Rice University
c     Houston, Texas
c
c\SCCS Information: @(#)
c FILE: svd.F   SID: 2.4   DATE OF SID: 10/17/00   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c
c-----------------------------------------------------------------------
c
c     %------------------------------------------------------%
c     | Storage Declarations:                                |
c     |                                                      |
c     | It is assumed that A is M by N with M .ge. N.        |
c     |                                                      |
c     | The maximum dimensions for all arrays are            |
c     | set here to accommodate a problem size of            |
c     | M .le. MAXM  and  N .le. MAXN                        |
c     |                                                      |
c     | The NEV right singular vectors will be computed in   |
c     | the N by NCV array V.                                |
c     |                                                      |
c     | The NEV left singular vectors will be computed in    |
c     | the M by NEV array U.                                |
c     |                                                      |
c     | NEV is the number of singular values requested.      |
c     |     See specifications for ARPACK usage below.       |
c     |                                                      |
c     | NCV is the largest number of basis vectors that will |
c     |     be used in the Implicitly Restarted Arnoldi      |
c     |     Process.  Work per major iteration is            |
c     |     proportional to N*NCV*NCV.                       |
c     |                                                      |
c     | You must set:                                        |
c     |                                                      |
c     | MAXM:   Maximum number of rows of the A allowed.     |
c     | MAXN:   Maximum number of columns of the A allowed.  |
c     | MAXNEV: Maximum NEV allowed                          |
c     | MAXNCV: Maximum NCV allowed                          |
c     %------------------------------------------------------%
c
      integer          maxm, maxn, maxnev, maxncv, ldv, ldu
      parameter       (maxm = 500, maxn=250, maxnev=10, maxncv=25, 
     &                 ldu = maxm, ldv=maxn )
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
      Double precision
     &                 v(ldv,maxncv), u(ldu, maxnev), 
     &                 workl(maxncv*(maxncv+8)), workd(3*maxn), 
     &                 s(maxncv,2), resid(maxn), ax(maxm)
      logical          select(maxncv)
      integer          iparam(11), ipntr(11)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      character        bmat*1, which*2
      integer          ido, m, n, nev, ncv, lworkl, info, ierr,
     &                 j, ishfts, maxitr, mode1, nconv
      logical          rvec
      Double precision      
     &                 tol, sigma, temp
c
c     %------------%
c     | Parameters |
c     %------------%
c
      Double precision
     &                 one, zero
      parameter        (one = 1.0D+0, zero = 0.0D+0)
c  
c     %-----------------------------%
c     | BLAS & LAPACK routines used |
c     %-----------------------------%
c
      Double precision           
     &                 dnrm2
      external         dnrm2, daxpy, dcopy, dscal
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c
c     %-------------------------------------------------%
c     | The following include statement and assignments |
c     | initiate trace output from the internal         |
c     | actions of ARPACK.  See debug.doc in the        |
c     | DOCUMENTS directory for usage.  Initially, the  |
c     | most useful information will be a breakdown of  |
c     | time spent in the various stages of computation |
c     | given by setting msaupd = 1.                    |
c     %-------------------------------------------------%
c
      include 'debug.h'
      ndigit = -3
      logfil = 6
      msgets = 0
      msaitr = 0 
      msapps = 0
      msaupd = 1
      msaup2 = 0
      mseigt = 0
      mseupd = 0
c
c     %-------------------------------------------------%
c     | The following sets dimensions for this problem. |
c     %-------------------------------------------------%
c
      m = 500
      n = 100
c
c     %------------------------------------------------%
c     | Specifications for ARPACK usage are set        | 
c     | below:                                         |
c     |                                                |
c     |    1) NEV = 4 asks for 4 singular values to be |  
c     |       computed.                                | 
c     |                                                |
c     |    2) NCV = 20 sets the length of the Arnoldi  |
c     |       factorization                            |
c     |                                                |
c     |    3) This is a standard problem               |
c     |         (indicated by bmat  = 'I')             |
c     |                                                |
c     |    4) Ask for the NEV singular values of       |
c     |       largest magnitude                        |
c     |         (indicated by which = 'LM')            |
c     |       See documentation in DSAUPD for the      |
c     |       other options SM, BE.                    | 
c     |                                                |
c     | Note: NEV and NCV must satisfy the following   |
c     |       conditions:                              |
c     |                 NEV <= MAXNEV,                 |
c     |             NEV + 1 <= NCV <= MAXNCV           |
c     %------------------------------------------------%
c
      nev   = 4
      ncv   = 10 
      bmat  = 'I'
      which = 'LM'
c
      if ( n .gt. maxn ) then
         print *, ' ERROR with _SVD: N is greater than MAXN '
         go to 9000
      else if ( m .gt. maxm ) then
         print *, ' ERROR with _SVD: M is greater than MAXM '
         go to 9000
      else if ( nev .gt. maxnev ) then
         print *, ' ERROR with _SVD: NEV is greater than MAXNEV '
         go to 9000
      else if ( ncv .gt. maxncv ) then
         print *, ' ERROR with _SVD: NCV is greater than MAXNCV '
         go to 9000
      end if
c
c     %-----------------------------------------------------%
c     | Specification of stopping rules and initial         |
c     | conditions before calling DSAUPD                    |
c     |                                                     |
c     |           abs(sigmaC - sigmaT) < TOL*abs(sigmaC)    |
c     |               computed   true                       |
c     |                                                     |
c     |      If TOL .le. 0,  then TOL <- macheps            |
c     |              (machine precision) is used.           |
c     |                                                     |
c     | IDO  is the REVERSE COMMUNICATION parameter         |
c     |      used to specify actions to be taken on return  |
c     |      from DSAUPD. (See usage below.)                |
c     |                                                     |
c     |      It MUST initially be set to 0 before the first |
c     |      call to DSAUPD.                                | 
c     |                                                     |
c     | INFO on entry specifies starting vector information |
c     |      and on return indicates error codes            |
c     |                                                     |
c     |      Initially, setting INFO=0 indicates that a     | 
c     |      random starting vector is requested to         |
c     |      start the ARNOLDI iteration.  Setting INFO to  |
c     |      a nonzero value on the initial call is used    |
c     |      if you want to specify your own starting       |
c     |      vector (This vector must be placed in RESID.)  | 
c     |                                                     |
c     | The work array WORKL is used in DSAUPD as           | 
c     | workspace.  Its dimension LWORKL is set as          |
c     | illustrated below.                                  |
c     %-----------------------------------------------------%
c
      lworkl = ncv*(ncv+8)
      tol = zero 
      info = 0
      ido = 0
c
c     %---------------------------------------------------%
c     | Specification of Algorithm Mode:                  |
c     |                                                   |
c     | This program uses the exact shift strategy        |
c     | (indicated by setting IPARAM(1) = 1.)             |
c     | IPARAM(3) specifies the maximum number of Arnoldi |
c     | iterations allowed.  Mode 1 of DSAUPD is used     |
c     | (IPARAM(7) = 1). All these options can be changed |
c     | by the user. For details see the documentation in |
c     | DSAUPD.                                           |
c     %---------------------------------------------------%
c
      ishfts = 1
      maxitr = n
      mode1 = 1
c
      iparam(1) = ishfts
c                
      iparam(3) = maxitr
c                  
      iparam(7) = mode1
c
c     %------------------------------------------------%
c     | M A I N   L O O P (Reverse communication loop) |
c     %------------------------------------------------%
c
 10   continue
c
c        %---------------------------------------------%
c        | Repeatedly call the routine DSAUPD and take | 
c        | actions indicated by parameter IDO until    |
c        | either convergence is indicated or maxitr   |
c        | has been exceeded.                          |
c        %---------------------------------------------%
c
         call dsaupd ( ido, bmat, n, which, nev, tol, resid, 
     &                 ncv, v, ldv, iparam, ipntr, workd, workl,
     &                 lworkl, info )
c
         if (ido .eq. -1 .or. ido .eq. 1) then
c
c           %---------------------------------------%
c           | Perform matrix vector multiplications |
c           |              w <--- A*x       (av())  |
c           |              y <--- A'*w      (atv()) |
c           | The user should supply his/her own    |
c           | matrix vector multiplication routines |
c           | here that takes workd(ipntr(1)) as    |
c           | the input, and returns the result in  |
c           | workd(ipntr(2)).                      |
c           %---------------------------------------%
c
            call av (m, n, workd(ipntr(1)), ax) 
            call atv (m, n, ax, workd(ipntr(2)))
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DSAUPD again. |
c           %-----------------------------------------%
c
            go to 10
c
         end if 
c
c     %----------------------------------------%
c     | Either we have convergence or there is |
c     | an error.                              |
c     %----------------------------------------%
c
      if ( info .lt. 0 ) then
c
c        %--------------------------%
c        | Error message. Check the |
c        | documentation in DSAUPD. |
c        %--------------------------%
c
         print *, ' '
         print *, ' Error with _saupd, info = ', info
         print *, ' Check documentation in _saupd '
         print *, ' '
c
      else 
c
c        %--------------------------------------------%
c        | No fatal errors occurred.                  |
c        | Post-Process using DSEUPD.                 |
c        |                                            |
c        | Computed singular values may be extracted. |  
c        |                                            |
c        | Singular vectors may also be computed now  |
c        | if desired.  (indicated by rvec = .true.)  | 
c        |                                            |
c        | The routine DSEUPD now called to do this   |
c        | post processing                            | 
c        %--------------------------------------------%
c           
         rvec = .true.
c
         call dseupd ( rvec, 'All', select, s, v, ldv, sigma, 
     &        bmat, n, which, nev, tol, resid, ncv, v, ldv, 
     &        iparam, ipntr, workd, workl, lworkl, ierr )
c
c        %-----------------------------------------------%
c        | Singular values are returned in the first     |
c        | column of the two dimensional array S         |
c        | and the corresponding right singular vectors  | 
c        | are returned in the first NEV columns of the  |
c        | two dimensional array V as requested here.    |
c        %-----------------------------------------------%
c
         if ( ierr .ne. 0) then
c
c           %------------------------------------%
c           | Error condition:                   |
c           | Check the documentation of DSEUPD. |
c           %------------------------------------%
c
            print *, ' '
            print *, ' Error with _seupd, info = ', ierr
            print *, ' Check the documentation of _seupd. '
            print *, ' '
c
         else
c
            nconv =  iparam(5)
            do 20 j=1, nconv
c
               s(j,1) = sqrt(s(j,1))
c
c              %-----------------------------%
c              | Compute the left singular   |
c              | vectors from the formula    |
c              |                             |
c              |     u = Av/sigma            |
c              |                             |
c              | u should have norm 1 so     |
c              | divide by norm(Av) instead. |
c              %-----------------------------%
c
               call av(m, n, v(1,j), ax)
               call dcopy(m, ax, 1, u(1,j), 1)
               temp = one/dnrm2(m, u(1,j), 1)
               call dscal(m, temp, u(1,j), 1)
c
c              %---------------------------%
c              |                           |
c              | Compute the residual norm |
c              |                           |
c              |   ||  A*v - sigma*u ||    |
c              |                           |
c              | for the NCONV accurately  |
c              | computed singular values  |
c              | and vectors.  (iparam(5)  |
c              | indicates how many are    |
c              | accurate to the requested |
c              | tolerance).               |
c              | Store the result in 2nd   |
c              | column of array S.        |
c              %---------------------------%
c
               call daxpy(m, -s(j,1), u(1,j), 1, ax, 1)
               s(j,2) = dnrm2(m, ax, 1)
c
 20         continue
c
c           %-------------------------------%
c           | Display computed residuals    |
c           %-------------------------------%
c
            call dmout(6, nconv, 2, s, maxncv, -6,
     &                'Singular values and direct residuals')
         end if
c
c        %------------------------------------------%
c        | Print additional convergence information |
c        %------------------------------------------%
c
         if ( info .eq. 1) then
            print *, ' '
            print *, ' Maximum number of iterations reached.'
            print *, ' '
         else if ( info .eq. 3) then
            print *, ' ' 
            print *, ' No shifts could be applied during implicit',
     &               ' Arnoldi update, try increasing NCV.'
            print *, ' '
         end if      
c
         print *, ' '
         print *, ' _SVD '
         print *, ' ==== '
         print *, ' '
         print *, ' Size of the matrix is ', n
         print *, ' The number of Ritz values requested is ', nev
         print *, ' The number of Arnoldi vectors generated',
     &            ' (NCV) is ', ncv
         print *, ' What portion of the spectrum: ', which
         print *, ' The number of converged Ritz values is ', 
     &              nconv 
         print *, ' The number of Implicit Arnoldi update',
     &            ' iterations taken is ', iparam(3)
         print *, ' The number of OP*x is ', iparam(9)
         print *, ' The convergence criterion is ', tol
         print *, ' '
c
      end if
c
c     %-------------------------%
c     | Done with program dsvd. |
c     %-------------------------%
c
 9000 continue
c
      end
c 
c ------------------------------------------------------------------
c     matrix vector subroutines
c
c     The matrix A is derived from the simplest finite difference 
c     discretization of the integral operator 
c
c                     f(s) = integral(K(s,t)x(t)dt).
c      
c     Thus, the matrix A is a discretization of the 2-dimensional kernel 
c     K(s,t)dt, where
c
c                 K(s,t) =  s(t-1)   if 0 .le. s .le. t .le. 1,
c                           t(s-1)   if 0 .le. t .lt. s .le. 1.
c
c     Thus A is an m by n matrix with entries
c
c                 A(i,j) = k*(si)*(tj - 1)  if i .le. j,
c                          k*(tj)*(si - 1)  if i .gt. j
c
c     where si = i/(m+1)  and  tj = j/(n+1)  and k = 1/(n+1).
c      
c-------------------------------------------------------------------
c
      subroutine av (m, n, x, w)
c
c     computes  w <- A*x
c
      integer          m, n, i, j
      Double precision
     &                 x(n), w(m), one, zero, h, k, s, t
      parameter        ( one = 1.0D+0, zero = 0.0D+0 ) 
c
      h = one / dble(m+1)
      k = one / dble(n+1)
      do 5 i = 1,m
         w(i) = zero
 5    continue
      t = zero
c      
      do 30 j = 1,n
         t = t+k
         s = zero
         do 10 i = 1,j
           s = s+h
           w(i) = w(i) + k*s*(t-one)*x(j)
 10      continue 
         do 20 i = j+1,m
           s = s+h
           w(i) = w(i) + k*t*(s-one)*x(j) 
 20      continue
 30   continue      
c
      return
      end
c
c-------------------------------------------------------------------
c
      subroutine atv (m, n, w, y)
c
c     computes  y <- A'*w
c
      integer         m, n, i, j
      Double precision
     &                w(m), y(n), one, zero,  h, k, s, t
      parameter       ( one = 1.0D+0, zero = 0.0D+0 )
c
      h = one / dble(m+1)
      k = one / dble(n+1)
      do 5 i = 1,n
         y(i) = zero
 5    continue
      t = zero
c
      do 30 j = 1,n
         t = t+k
         s = zero
         do 10 i = 1,j
           s = s+h
           y(j) = y(j) + k*s*(t-one)*w(i)
 10      continue
         do 20 i = j+1,m
           s = s+h
           y(j) = y(j) + k*t*(s-one)*w(i)
 20      continue
 30   continue
c
      return
      end 
c