File: dsdrv4.f

package info (click to toggle)
arpack 2.1-8
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k, sarge
  • size: 12,156 kB
  • ctags: 14,653
  • sloc: fortran: 49,617; makefile: 465; ansic: 39; sh: 10
file content (483 lines) | stat: -rw-r--r-- 17,206 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
      program dsdrv4 
c
c     Program to illustrate the idea of reverse communication
c     in shift and invert mode for a generalized symmetric eigenvalue
c     problem.  The following program uses the two LAPACK subroutines 
c     dgttrf.f and dgttrs to factor and solve a tridiagonal system of 
c     equations.
c
c     We implement example four of ex-sym.doc in DOCUMENTS directory
c
c\Example-4
c     ... Suppose we want to solve A*x = lambda*M*x in inverse mode,
c         where A and M are obtained from the finite element discretrization
c         of the 1-dimensional discrete Laplacian
c                             d^2u / dx^2
c         on the interval [0,1] with zero Dirichlet boundary condition
c         using piecewise linear elements.
c
c     ... OP = (inv[A - sigma*M])*M  and  B = M.
c
c     ... Use mode 3 of DSAUPD.
c
c\BeginLib
c
c\Routines called:
c     dsaupd  ARPACK reverse communication interface routine.
c     dseupd  ARPACK routine that returns Ritz values and (optionally)
c             Ritz vectors.
c     dgttrf  LAPACK tridiagonal factorization routine.
c     dgttrs  LAPACK tridiagonal solve routine.
c     daxpy   Level 1 BLAS that computes y <- alpha*x+y.
c     dcopy   Level 1 BLAS that copies one vector to another.
c     dscal   Level 1 BLAS that scales a vector by a scalar.
c     dnrm2   Level 1 BLAS that computes the norm of a vector.
c     av      Matrix vector multiplication routine that computes A*x.
c     mv      Matrix vector multiplication routine that computes M*x.
c 
c\Author
c     Richard Lehoucq
c     Danny Sorensen
c     Chao Yang
c     Dept. of Computational &
c     Applied Mathematics
c     Rice University
c     Houston, Texas
c
c\SCCS Information: @(#)
c FILE: sdrv4.F   SID: 2.5   DATE OF SID: 10/17/00   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c----------------------------------------------------------------------     
c
c     %-----------------------------%
c     | Define leading dimensions   |
c     | for all arrays.             |
c     | MAXN:   Maximum dimension   |
c     |         of the A allowed.   |
c     | MAXNEV: Maximum NEV allowed |
c     | MAXNCV: Maximum NCV allowed |
c     %-----------------------------%
c
      integer          maxn, maxnev, maxncv, ldv
      parameter        (maxn=256, maxnev=10, maxncv=25, 
     &                 ldv=maxn)
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
      Double precision
     &                 v(ldv,maxncv), workl(maxncv*(maxncv+8)),
     &                 workd(3*maxn), d(maxncv,2), resid(maxn), 
     &                 ad(maxn), adl(maxn), adu(maxn), adu2(maxn)
      logical          select(maxncv)
      integer          iparam(11), ipntr(11), ipiv(maxn)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      character        bmat*1, which*2
      integer          ido, n, nev, ncv, lworkl, info, j, ierr,
     &                 nconv, maxitr, ishfts, mode
      logical          rvec
      Double precision    
     &                 sigma, r1, r2, tol, h
c
c     %------------%
c     | Parameters |
c     %------------%
c
      Double precision
     &                 zero, one, two, four, six
      parameter        (zero = 0.0D+0, one = 1.0D+0,
     &                  four = 4.0D+0, six = 6.0D+0,
     &                  two = 2.0D+0 )
c
c     %-----------------------------%
c     | BLAS & LAPACK routines used |
c     %-----------------------------%
c
      Double precision
     &                 dnrm2
      external         daxpy, dcopy, dscal, dnrm2, dgttrf, dgttrs
c
c     %--------------------%
c     | Intrinsic function |
c     %--------------------%
c
      intrinsic        abs
c
c     %-----------------------%
c     | Executable statements |
c     %-----------------------%
c
c     %----------------------------------------------------%
c     | The number N is the dimension of the matrix.  A    |
c     | generalized eigenvalue problem is solved (BMAT =   |
c     | 'G'.) NEV is the number of eigenvalues (closest to |
c     | the shift SIGMA) to be approximated.  Since the    |
c     | shift-invert mode is used, WHICH is set to 'LM'.   |
c     | The user can modify NEV, NCV, SIGMA to solve       |
c     | problems of different sizes, and to get different  |
c     | parts of the spectrum. However, The following      |
c     | conditions must be satisfied:                      |
c     |                   N <= MAXN,                       | 
c     |                 NEV <= MAXNEV,                     |
c     |             NEV + 1 <= NCV <= MAXNCV               | 
c     %----------------------------------------------------% 
c
      n = 100
      nev = 4
      ncv = 10
      if ( n .gt. maxn ) then
         print *, ' ERROR with _SDRV4: N is greater than MAXN '
         go to 9000
      else if ( nev .gt. maxnev ) then
         print *, ' ERROR with _SDRV4: NEV is greater than MAXNEV '
         go to 9000
      else if ( ncv .gt. maxncv ) then
         print *, ' ERROR with _SDRV4: NCV is greater than MAXNCV '
         go to 9000
      end if
      bmat = 'G'
      which = 'LM'
      sigma = zero 
c
c     %--------------------------------------------------%
c     | The work array WORKL is used in DSAUPD as        |
c     | workspace.  Its dimension LWORKL is set as       |
c     | illustrated below.  The parameter TOL determines |
c     | the stopping criterion.  If TOL<=0, machine      |
c     | precision is used.  The variable IDO is used for |
c     | reverse communication and is initially set to 0. |
c     | Setting INFO=0 indicates that a random vector is |
c     | generated in DSAUPD to start the Arnoldi         |
c     | iteration.                                       |
c     %--------------------------------------------------%
c
      lworkl = ncv*(ncv+8)
      tol = zero 
      ido = 0
      info = 0
c
c     %---------------------------------------------------%
c     | This program uses exact shifts with respect to    |
c     | the current Hessenberg matrix (IPARAM(1) = 1).    |
c     | IPARAM(3) specifies the maximum number of Arnoldi |
c     | iterations allowed.  Mode 3 specified in the      |
c     | documentation of DSAUPD is used (IPARAM(7) = 3).  |
c     | All these options may be changed by the user.     |
c     | For details, see the documentation in DSAUPD.     |
c     %---------------------------------------------------%
c
      ishfts = 1
      maxitr = 300
      mode   = 3
c
      iparam(1) = ishfts
      iparam(3) = maxitr 
      iparam(7) = mode 
c
c     %-------------------------------------------------------%
c     | Call LAPACK routine to factor the tridiagonal matrix  |
c     | (A-SIGMA*M).  The matrix A is the 1-d discrete        |
c     | Laplacian. The matrix M is the associated mass matrix |
c     | arising from using piecewise linear finite elements   |
c     | on the interval [0, 1].                               |
c     %-------------------------------------------------------%
c
      h = one / dble(n+1)
      r1 = (four / six) * h
      r2 = (one / six) * h
      do 20 j=1,n
         ad(j) = two/h - sigma * r1
         adl(j) = -one/h - sigma * r2
 20   continue 
      call dcopy (n, adl, 1, adu, 1)
      call dgttrf (n, adl, ad, adu, adu2, ipiv, ierr)
      if (ierr .ne. 0) then 
         print *, ' Error with _gttrf in _SDRV4.'
         go to 9000
      end if
c
c     %-------------------------------------------%
c     | M A I N   L O O P (Reverse communication) |
c     %-------------------------------------------%
c
 10   continue
c
c        %---------------------------------------------%
c        | Repeatedly call the routine DSAUPD and take |
c        | actions indicated by parameter IDO until    |
c        | either convergence is indicated or maxitr   |
c        | has been exceeded.                          |
c        %---------------------------------------------%
c
         call dsaupd ( ido, bmat, n, which, nev, tol, resid,
     &                 ncv, v, ldv, iparam, ipntr, workd, workl,
     &                 lworkl, info )
c
         if (ido .eq. -1) then
c
c           %--------------------------------------------%
c           | Perform  y <--- OP*x = inv[A-SIGMA*M]*M*x  |
c           | to force the starting vector into the      |
c           | range of OP.  The user should supply       |
c           | his/her own matrix vector multiplication   |
c           | routine and a linear system solver here.   |
c           | The matrix vector multiplication routine   |
c           | takes workd(ipntr(1)) as the input vector. |
c           | The final result is returned to            |
c           | workd(ipntr(2)).                           |
c           %--------------------------------------------%
c
            call mv (n, workd(ipntr(1)), workd(ipntr(2)))
c
            call dgttrs ('Notranspose', n, 1, adl, ad, adu, adu2, ipiv, 
     &                   workd(ipntr(2)), n, ierr) 
            if (ierr .ne. 0) then 
               print *, ' '
               print *, ' Error with _gttrs in _SDRV4. '
               print *, ' ' 
               go to 9000
            end if
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DSAUPD again. |
c           %-----------------------------------------%
c
            go to 10
c
         else if (ido .eq. 1) then
c
c           %-----------------------------------------%
c           | Perform y <-- OP*x = inv[A-sigma*M]*M*x |
c           | M*x has been saved in workd(ipntr(3)).  |
c           | the user only needs the linear system   |
c           | solver here that takes workd(ipntr(3)   |
c           | as input, and returns the result to     |
c           | workd(ipntr(2)).                        | 
c           %-----------------------------------------%
c
            call dcopy ( n, workd(ipntr(3)), 1, workd(ipntr(2)), 1)
            call dgttrs ('Notranspose', n, 1, adl, ad, adu, adu2, ipiv, 
     &                   workd(ipntr(2)), n, ierr)
            if (ierr .ne. 0) then 
               print *, ' '
               print *, ' Error with _gttrs in _SDRV4.'
               print *, ' ' 
               go to 9000
            end if
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DSAUPD again. |
c           %-----------------------------------------%
c
            go to 10
c
        else if (ido .eq. 2) then
c
c           %-----------------------------------------%
c           |          Perform  y <--- M*x            |
c           | Need the matrix vector multiplication   |
c           | routine here that takes workd(ipntr(1)) |
c           | as the input and returns the result to  |
c           | workd(ipntr(2)).                        |
c           %-----------------------------------------%
c
            call mv (n, workd(ipntr(1)), workd(ipntr(2)))
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DSAUPD again. |
c           %-----------------------------------------%
c
            go to 10
c
        end if 
c
c     %-----------------------------------------%
c     | Either we have convergence, or there is |
c     | an error.                               |
c     %-----------------------------------------%
c
      if ( info .lt. 0 ) then
c
c        %--------------------------%
c        | Error message, check the |
c        | documentation in DSAUPD. |
c        %--------------------------%
c
         print *, ' '
         print *, ' Error with _saupd, info = ',info
         print *, ' Check the documentation of _saupd '
         print *, ' ' 
c
      else 
c
c        %-------------------------------------------%
c        | No fatal errors occurred.                 |
c        | Post-Process using DSEUPD.                |
c        |                                           |
c        | Computed eigenvalues may be extracted.    |
c        |                                           |
c        | Eigenvectors may also be computed now if  |
c        | desired.  (indicated by rvec = .true.)    |
c        %-------------------------------------------%
c
         rvec = .true.
c
         call dseupd ( rvec, 'All', select, d, v, ldv, sigma,
     &        bmat, n, which, nev, tol, resid, ncv, v, ldv, 
     &        iparam, ipntr, workd, workl, lworkl, ierr )
c
c        %----------------------------------------------%
c        | Eigenvalues are returned in the first column |
c        | of the two dimensional array D and the       |
c        | corresponding eigenvectors are returned in   |
c        | the first NEV columns of the two dimensional |
c        | array V if requested.  Otherwise, an         |
c        | orthogonal basis for the invariant subspace  |
c        | corresponding to the eigenvalues in D is     |
c        | returned in V.                               |
c        %----------------------------------------------%
c
         if ( ierr .ne. 0 ) then 
c
c           %------------------------------------%
c           | Error condition:                   |
c           | Check the documentation of DSEUPD. |
c           %------------------------------------%
c
            print *, ' '
            print *, ' Error with _seupd, info = ', ierr
            print *, ' Check the documentation of _seupd '
            print *, ' '
c
         else 
c
            nconv =  iparam(5)
            do 30 j=1, nconv
c
c              %---------------------------%
c              | Compute the residual norm |
c              |                           |
c              |   ||  A*x - lambda*x ||   |
c              |                           |
c              | for the NCONV accurately  |
c              | computed eigenvalues and  |
c              | eigenvectors.  (iparam(5) |
c              | indicates how many are    |
c              | accurate to the requested |
c              | tolerance)                |
c              %---------------------------%
c  
               call av(n, v(1,j), workd)
               call mv(n, v(1,j), workd(n+1))
               call daxpy (n, -d(j,1), workd(n+1), 1, workd, 1)
               d(j,2) =  dnrm2(n, workd, 1)
               d(j,2) = d(j,2) / abs(d(j,1))
c
 30         continue
c
            call dmout(6, nconv, 2, d, maxncv, -6,
     &                'Ritz values and relative residuals')
c
        end if
c
c       %------------------------------------------%
c       | Print additional convergence information |
c       %------------------------------------------%
c
        if ( info .eq. 1) then
           print *, ' '
           print *, ' Maximum number of iterations reached.'
           print *, ' '
        else if ( info .eq. 3) then
           print *, ' '
           print *, ' No shifts could be applied during implicit',
     &              ' Arnoldi update, try increasing NCV.'
           print *, ' '
        end if
c
        print *, ' '
        print *, ' _SDRV4 '
        print *, ' ====== '
        print *, ' '
        print *, ' Size of the matrix is ', n
        print *, ' The number of Ritz values requested is ', nev
        print *, ' The number of Arnoldi vectors generated',
     &               ' (NCV) is ', ncv
        print *, ' What portion of the spectrum: ', which
        print *, ' The number of converged Ritz values is ',
     &             nconv 
        print *, ' The number of Implicit Arnoldi update',
     &           ' iterations taken is ', iparam(3)
        print *, ' The number of OP*x is ', iparam(9)
        print *, ' The convergence criterion is ', tol
        print *, ' '
c
      end if
c
c     %---------------------------%
c     | Done with program dsdrv4. |
c     %---------------------------%
c
 9000 continue
c
      end
c
c------------------------------------------------------------------------
c     matrix vector subroutine
c     The matrix used is the 1 dimensional mass matrix
c     on the interval [0,1].
c
      subroutine mv (n, v, w)
      integer         n, j
      Double precision
     &                v(n),w(n), one, four, six, h
      parameter       (one = 1.0D+0, four = 4.0D+0, 
     &                 six = 6.0D+0)
c
      w(1) =  four*v(1) + v(2)
      do 100 j = 2,n-1
         w(j) = v(j-1) + four*v(j) + v(j+1) 
  100 continue
      j = n
      w(j) = v(j-1) + four*v(j) 
c
c     Scale the vector w by h.
c
      h = one / ( six*dble(n+1))
      call dscal(n, h, w, 1)
      return
      end
c------------------------------------------------------------------------
c     matrix vector subroutine
c     where the matrix is the finite element discretization of the 
c     1 dimensional discrete Laplacian on [0,1] with zero Dirichlet 
c     boundary condition using piecewise linear elements.
c
      subroutine av (n, v, w)
      integer           n, j
      Double precision
     &                  v(n), w(n), two, one, h
      parameter         (one = 1.0D+0, two = 2.0D+0)
c
      w(1) =  two*v(1) - v(2)
      do 100 j = 2,n-1
         w(j) = - v(j-1) + two*v(j) - v(j+1) 
  100 continue
      j = n
      w(j) = - v(j-1) + two*v(j) 
c
c     Scale the vector w by (1/h)
c
      h = one / dble(n+1)
      call dscal(n, one/h, w, 1)
      return
      end