1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
|
From: Roland Mas <lolando@debian.org>
Date: Sun, 20 Oct 2024 17:22:19 +0200
Subject: Mark strings containing backslash-space sequences as raw literals
---
arpys/postprocessing.py | 12 ++++++------
1 file changed, 6 insertions(+), 6 deletions(-)
diff --git a/arpys/postprocessing.py b/arpys/postprocessing.py
index aa8e5d7..ef0112c 100755
--- a/arpys/postprocessing.py
+++ b/arpys/postprocessing.py
@@ -1647,7 +1647,7 @@ def alt_a2k(angle, tilt, theta, phi, hv, a, b=None, c=None, work_func=4) :
# +---------+ #
def step_function_core(x, step_x=0, flip=False) :
- """ Implement a perfect step function f(x) with step at `step_x`::
+ r""" Implement a perfect step function f(x) with step at `step_x`::
/ 0 if x < step_x
|
@@ -1681,7 +1681,7 @@ def step_function(x, step_x=0, flip=False) :
return res.astype(float)
def step_core(x, step_x=0, flip=False) :
- """ Implement a step function f(x) with step at `step_x`::
+ r""" Implement a step function f(x) with step at `step_x`::
/ 0 if x < step_x
f(x) = {
@@ -1706,7 +1706,7 @@ def step_ufunc(x, step_x=0, flip=False) :
return res.astype(float)
def lorentzian(x, a=1, mu=0, gamma=1) :
- """
+ r"""
Implement a Lorentzian curve f(x) given by the expression::
a
@@ -1738,7 +1738,7 @@ def lorentzian(x, a=1, mu=0, gamma=1) :
return a/( np.pi*gamma*( 1 + ((x-mu)/gamma)**2 ) )
def gaussian(x, a=1, mu=0, sigma=1) :
- """
+ r"""
Implement a Gaussian bell curve f(x) given by the expression::
2
@@ -1764,7 +1764,7 @@ def gaussian(x, a=1, mu=0, sigma=1) :
return a * np.exp(-0.5 * (x-mu)**2 / sigma**2)
#def merge_functions(f, g, x0) :
-# """ Return a function F(x) which is defined by:
+# r""" Return a function F(x) which is defined by:
# / f(x) if x < x0
# F(x) = {
# \ g(x) if x >= x0
@@ -1782,7 +1782,7 @@ def gaussian(x, a=1, mu=0, sigma=1) :
# return F
def gaussian_step(x, step_x=0, a=1, mu=0, sigma=1, flip=False, after_step=None) :
- """ Implement (as a broadcastable np.ufunc) a sort-of convolution of a
+ r""" Implement (as a broadcastable np.ufunc) a sort-of convolution of a
step-function with a Gaussian bell curve, defined as follows ::
/ g(x, a, mu, sigma) if x < step_x
|