1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <stdio.h>
#include <arrayfire.h>
#include <af/util.h>
using namespace af;
array A, B;
static array dist_naive(array a, array b)
{
array dist_mat = constant(0, a.dims(1), (int)b.dims(1));
// Iterate through columns a
for (int ii = 0; ii < (int)a.dims(1); ii++) {
// Iterate through columns of b
for (int jj = 0; jj < (int)b.dims(1); jj++) {
// Get the sum of absolute differences
for (int kk = 0; kk < (int)a.dims(0); kk++) {
dist_mat(ii, jj) += abs(a(kk, ii) - b(kk, jj));
}
}
}
return dist_mat;
}
static array dist_vec(array a, array b)
{
array dist_mat = constant(0, (int)a.dims(1), (int)b.dims(1));
// Iterate through columns a
for (int ii = 0; ii < (int)a.dims(1); ii++) {
array avec = a(span, ii);
// Iterate through columns of b
for (int jj = 0; jj < (int)b.dims(1); jj++) {
array bvec = b(span, jj);
// get SAD using sum on the vector
dist_mat(ii, jj) = sum(abs(avec - bvec));
}
}
return dist_mat;
}
static array dist_gfor1(array a, array b)
{
array dist_mat = constant(0, (int)a.dims(1), (int)b.dims(1));
// GFOR along columns of a
gfor (seq ii, (int)a.dims(1)) {
array avec = a(span, ii);
// Itere through columns of b
for (int jj = 0; jj < (int)b.dims(1); jj++) {
array bvec = b(span, jj);
// get SAD using sum on the vector
dist_mat(ii, jj) = sum(abs(avec - bvec));
}
}
return dist_mat;
}
static array dist_gfor2(array a, array b)
{
array dist_mat = constant(0, (int)a.dims(1), (int)b.dims(1));
// GFOR along columns of b
gfor (seq jj, (int)b.dims(1)) {
array bvec = b(span, jj);
// Iterate through columns of A
for (int ii = 0; ii < (int)a.dims(1); ii++) {
array avec = a(span, ii);
// get SAD using sum on the vector
dist_mat(ii, jj) = sum(abs(avec - bvec));
}
}
return dist_mat;
}
static array dist_tile1(array a, array b)
{
// int feat_len = (int)a.dims(0); // Same as (int)b.dims(0);
int alen = (int)a.dims(1);
int blen = (int)b.dims(1);
array dist_mat = constant(0, alen, blen);
// Iterate through columns of b
for (int jj = 0; jj < blen; jj++) {
// Get the column vector of b
// shape of bvec is (feat_len, 1)
array bvec = b(span, jj);
// Tile avec to be same size as a
// shape of bvec_tiled is (feat_len, alen)
array bvec_tiled = tile(bvec, 1, alen);
// Get the sum of absolute differences
array sad = sum(abs(bvec_tiled - a));
// sad is row vector, dist_mat needs column vector
// transpose sad and fill in dist_mat
dist_mat(span, jj) = sad.T();
}
return dist_mat;
}
static array dist_tile2(array a, array b)
{
int feat_len = (int)a.dims(0);
int alen = (int)a.dims(1);
int blen = (int)b.dims(1);
// Shape of a is (feat_len, alen, 1)
array a_mod = a;
// Reshape b from (feat_len, blen) to (feat_len, 1, blen)
array b_mod = moddims(b, feat_len, 1, blen);
// Tile both matrices to be (feat_len, alen, blen)
array a_tiled = tile(a_mod, 1, 1, blen);
array b_tiled = tile(b_mod, 1, alen, 1);
// Do The sum operation along first dimension
// Output is of shape (1, alen, blen)
array dist_mod = sum(abs(a_tiled - b_tiled));
// Reshape dist_mat from (1, alen, blen) to (alen, blen)
array dist_mat = moddims(dist_mod, alen, blen);
return dist_mat;
}
static void bench_naive()
{
dist_naive(A, B);
}
static void bench_vec()
{
dist_vec(A, B);
}
static void bench_gfor1()
{
dist_gfor1(A, B);
}
static void bench_gfor2()
{
dist_gfor2(A, B);
}
static void bench_tile1()
{
dist_tile1(A, B);
}
static void bench_tile2()
{
dist_tile2(A, B);
}
int main(int argc, char **argv)
{
try {
af::info();
// Do not increase the sizes
// dist_naive and dist_vec get too slow at large sizes
A = randu(3, 200);
B = randu(3, 300);
array d1 = dist_naive(A, B);
array d2 = dist_vec (A, B);
array d3 = dist_gfor1(A, B);
array d4 = dist_gfor2(A, B);
array d5 = dist_tile1(A, B);
array d6 = dist_tile2(A, B);
printf("Max. Error for dist_vec : %f\n", max<float>(abs(d1 - d2)));
printf("Max. Error for dist_gfor1: %f\n", max<float>(abs(d1 - d3)));
printf("Max. Error for dist_gfor2: %f\n", max<float>(abs(d1 - d4)));
printf("Max. Error for dist_tile1: %f\n", max<float>(abs(d1 - d5)));
printf("Max. Error for dist_tile2: %f\n", max<float>(abs(d1 - d6)));
printf("\n");
printf("Time for dist_naive: %2.2fms\n", 1000 * timeit(bench_naive));
printf("Time for dist_vec : %2.2fms\n", 1000 * timeit(bench_vec ));
printf("Time for dist_gfor1: %2.2fms\n", 1000 * timeit(bench_gfor1));
printf("Time for dist_gfor2: %2.2fms\n", 1000 * timeit(bench_gfor2));
printf("Time for dist_tile1: %2.2fms\n", 1000 * timeit(bench_tile1));
printf("Time for dist_tile2: %2.2fms\n", 1000 * timeit(bench_tile2));
} catch(af::exception ex) {
fprintf(stderr, "%s\n", ex.what());
throw;
}
return 0;
}
|