File: brain_segmentation.cpp

package info (click to toggle)
arrayfire 3.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 109,016 kB
  • sloc: cpp: 127,909; lisp: 6,878; python: 3,923; ansic: 1,051; sh: 347; makefile: 338; xml: 175
file content (170 lines) | stat: -rw-r--r-- 3,894 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <string.h>
#include <stdio.h>
#include <math.h>
#include <arrayfire.h>
#include "../common/progress.h"

using namespace af;

const float h_sx_kernel[] = {  1,  2,  1,
    0,  0,  0,
    -1, -2, -1
};
const float h_sy_kernel[] = { -1, 0, 1,
    -2, 0, 2,
    -1, 0, 1
};

// Unused
//const float h_lp_kernel[] = { -0.5f, -1.0f, -0.5f,
//    -1.0f,  6.0f, -1.0f,
//    -0.5f, -1.0f, -0.5f
//};

array edges_slice(array x)
{
    array ret;
    static array kernelx = array(dim4(3, 3), h_sx_kernel);
    static array kernely = array(dim4(3, 3), h_sy_kernel);
    ret = convolve(x, kernelx) + convolve(x, kernely);
    return abs(ret);
}

array gauss(array x, float u, float s)
{
    double f = 1 / sqrt(2 * af::Pi * s * s);
    array e = exp(-pow((x - u), 2) / (2 * s * s));
    return f * e;
}

array segment_volume(array A, int k)
{
    array I1 = A(span, span, k);

    float mx = max<float>(I1);
    float mn = min<float>(I1);

    float u0 = 0.9 * mx;
    float s0 = (mx - mn) / 2;

    float u1 = 1.1 * mn;
    float s1 = (mx - mn) / 2;

    array L0  = gauss(I1, u0, s0);
    array L11 = gauss(I1, u1, s1);
    array L10;
    array L12;
    static array kernel = constant(1, 3, 3) / 9;
    static array L11_old;
    static array L12_old;

    if (k == 0) {
        L11 = convolve(L11, kernel);
        L10 = L11;
    } else {
        L10 = L11_old;
        L11 = L12_old;
    }

    if (k < A.dims(2) - 1) {
        L12 = gauss(A(span, span, k + 1), u1, s1);
        L12 = convolve(L12, kernel);
    } else {
        L12 = L11;
    }

    L11_old = L11;
    L12_old = L12;

    array L1 = (L10 + L11 + L12) / 3;
    array S = (L0 > L1);
    return S.as(A.type());
}

void brain_seg(bool console)
{
    af::Window wnd("Brain Segmentation Demo");
    wnd.setColorMap(AF_COLORMAP_HEAT);

    double time_total = 30; // run for N seconds

    array B = loadImage(ASSETS_DIR "/examples/images/brain.png");
    int slices = 256;

    B = moddims(B, dim4(B.dims(0), B.dims(1)/slices, slices));
    af::sync();

    int N = 2 * slices - 1;

    timer t = timer::start();
    int iter = 0;

    /* loop forward and backward for 100 frames
     * exit if the user presses escape or the animation
     * ends
     */
    for (int i = 0; !wnd.close(); i++) {
        iter++;

        int j = i % N;
        int k = std::min(j, N - j);
        array Bi = B(span, span, k);

        /* process */
        array Si = segment_volume(B, k);
        array Ei = edges_slice(Si);
        array Mi = meanShift(Bi, 10, 10, 5);

        /* visualization */
        if (!console) {
            wnd.grid(2, 2);

            wnd(0, 0).image(Bi/255.f, "Input");
            wnd(1, 0).image(Ei, "Edges");
            wnd(0, 1).image(Mi/255.f, "Meanshift");
            wnd(1, 1).image(Si, "Segmented");

            wnd.show();
        } else {
            /* sync the operations so that current
             * iteration comptation finishes
             * */
            af::sync();
        }

        /* we have had ran throuh simlation results
         * exit the rendering loop */
        if (!progress(iter, t, time_total))
            break;
        if (!(i<100*N))
            break;
    }
}

int main(int argc, char* argv[])
{
    int device = argc > 1 ? atoi(argv[1]) : 0;
    bool console = argc > 2 ? argv[2][0] == '-' : false;

    try {
        af::setDevice(device);
        af::info();

        printf("Brain segmentation example\n");
        brain_seg(console);

    } catch (af::exception& e) {
        fprintf(stderr, "%s\n", e.what());
    }

    return 0;
}