File: filters.cpp

package info (click to toggle)
arrayfire 3.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 109,016 kB
  • sloc: cpp: 127,909; lisp: 6,878; python: 3,923; ansic: 1,051; sh: 347; makefile: 338; xml: 175
file content (256 lines) | stat: -rw-r--r-- 8,065 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*******************************************************
* Copyright (c) 2015, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <arrayfire.h>

using namespace af;

array clamp(const array &in, float min = 0.0f, float max = 255.0f)
{
    return ((in<min)*0.0f + (in>max)*255.0f + (in >= min && in <= max)*in);
}

/**
* randomization - controls % of total number of pixels in the image
* that will be effected by random noise
* repeat - # of times the process is carried out on the previous steps output
*/
array hurl(const array &in, int randomization, int repeat)
{
    int w = in.dims(0);
    int h = in.dims(1);
    float f = randomization / 100.0f;
    int dim = (int)(f*w*h);
    array ret_val = in.copy();
    array temp = moddims(ret_val, w*h, 3);
    for (int i = 0; i<repeat; ++i) {
        array idxs = (w*h)  * randu(dim);
        array rndR = 255.0f * randu(dim);
        array rndG = 255.0f * randu(dim);
        array rndB = 255.0f * randu(dim);
        temp(idxs, 0) = rndR;
        temp(idxs, 1) = rndG;
        temp(idxs, 2) = rndB;
    }
    ret_val = moddims(temp, in.dims());
    return ret_val;
}

/**
* Retrieve a new image of same dimensions of the original image
* where each original image's pixel is replaced by randomly picked
* neighbor in the provided local neighborhood window
*/
array getRandomNeighbor(const array &in, int windW, int windH)
{
    array rnd = 2.0f*randu(in.dims(0), in.dims(1)) - 1.0f;
    array sx = seq(in.dims(0));
    array sy = seq(in.dims(1));
    array vx = tile(sx, 1, in.dims(1)) + floor(rnd*windW);
    array vy = tile(sy.T(), in.dims(0), 1) + floor(rnd*windH);
    array vxx = clamp(vx, 0, in.dims(0));
    array vyy = clamp(vy, 0, in.dims(1));
    array in2 = moddims(in, vx.elements(), 3);
    return moddims(in2(vyy*in.dims(0) + vxx, span), in.dims());
}

/**
* randomly pick neighbor from given window size and replace the
* current pixel with the randomly chosen color.
* No new colors are introduced, unlike hurl.
*/
array spread(const array &in, int window_width, int window_height)
{
    return getRandomNeighbor(in, window_width, window_height);
}

/**
* randomization - controls % of total number of pixels in the image
* that will be effected by random noise
* repeat - # of times the process is carried out on the previous steps output
*/
array pick(const array &in, int randomization, int repeat)
{
    int w = in.dims(0);
    int h = in.dims(1);
    float f = randomization / 100.0f;
    int dim = (int)(f*w*h);
    array ret_val = in.copy();
    for (int i = 0; i<repeat; ++i) {
        array idxs = (w*h)  * randu(dim);
        array rnd = getRandomNeighbor(ret_val, 1, 1);
        array temp_src = moddims(rnd, w*h, 3);
        array temp_dst = moddims(ret_val, w*h, 3);
        temp_dst(idxs, span) = temp_src(idxs, span);
        ret_val = moddims(temp_dst, in.dims());
    }
    return ret_val;
}

void prewitt(array &mag, array &dir, const array &in)
{
    static float h1[] = { 1, 1, 1 };
    static float h2[] = { -1, 0, 1 };
    static array h1d(3, h1);
    static array h2d(3, h2);

    // Find the gradients
    array Gy = af::convolve(h2d, h1d, in) / 6;
    array Gx = af::convolve(h1d, h2d, in) / 6;

    // Find magnitude and direction
    mag = hypot(Gx, Gy);
    dir = atan2(Gy, Gx);
}

void sobelFilter(array &mag, array &dir, const array &in)
{
    // Find the gradients
    array Gy, Gx;
    af::sobel(Gx, Gy, in);

    // Find magnitude and direction
    mag = hypot(Gx, Gy);
    dir = atan2(Gy, Gx);
}

void normalizeImage(array &in)
{
    float min = af::min<float>(in);
    float max = af::max<float>(in);
    in = 255.0f*((in - min) / (max - min));
}

array DifferenceOfGaussian(const array &in, int window_radius1, int window_radius2)
{
    array ret_val;
    int w1 = 2 * window_radius1 + 1;
    int w2 = 2 * window_radius2 + 1;
    array g1 = gaussianKernel(w1, w1);
    array g2 = gaussianKernel(w2, w2);
    ret_val = (convolve(in, g1) - convolve(in, g2));
    normalizeImage(ret_val);
    return ret_val;
}

array medianfilter(const array &in, int window_width, int window_height)
{
    array ret_val(in.dims());
    ret_val(span, span, 0) = medfilt(in(span, span, 0), window_width, window_height);
    ret_val(span, span, 1) = medfilt(in(span, span, 1), window_width, window_height);
    ret_val(span, span, 2) = medfilt(in(span, span, 2), window_width, window_height);
    return ret_val;
}

array gaussianblur(const array &in, int window_width, int window_height, double sigma)
{
    array g = gaussianKernel(window_width, window_height, sigma, sigma);
    return convolve(in, g);
}

/**
* azimuth range is [0-360]
* elevation range is [0-180]
* depth range is [1-100]
* Note: this function has been tailored after
* the emboss implementation in GIMP editor
**/
array emboss(const array &input, float azimuth, float elevation, float depth)
{
    if (depth<1 || depth>100) {
        printf("Depth should be in the range of 1-100");
        return input;
    }
    static float x[3] = { -1, 0, 1 };
    static array hg(3, x);
    static array vg = hg.T();

    array in = input;
    if (in.dims(2)>1)
        in = colorSpace(input, AF_GRAY, AF_RGB);
    else
        in = input;

    // convert angles to radians
    float phi = elevation*af::Pi / 180.0f;
    float theta = azimuth*af::Pi / 180.0f;

    // compute light pos in cartesian coordinates
    // and scale with maximum intensity
    // phi will effect the amount of we intend to put
    // on a pixel
    float pos[3];
    pos[0] = 255.99f * cos(phi)*cos(theta);
    pos[1] = 255.99f * cos(phi)*sin(theta);
    pos[2] = 255.99f * sin(phi);

    // compute gradient vector
    array gx = convolve(in, vg);
    array gy = convolve(in, hg);

    float pxlz = (6 * 255.0f) / depth;
    array zdepth = constant(pxlz, gx.dims());
    array vdot = gx*pos[0] + gy*pos[1] + pxlz*pos[2];
    array outwd = vdot < 0.0f;
    array norm = vdot / sqrt(gx*gx + gy*gy + zdepth*zdepth);

    array color = outwd * 0.0f + (1 - outwd) * norm;
    return color;
}

int main(int argc, char **argv)
{
    try {
        int device = argc > 1 ? atoi(argv[1]) : 0;
        af::setDevice(device);
        af::info();

        array img = loadImage(ASSETS_DIR "/examples/images/vegetable-woman.jpg", true);

        array prew_mag, prew_dir;
        array sob_mag, sob_dir;
        array img1ch = colorSpace(img, AF_GRAY, AF_RGB);
        prewitt(prew_mag, prew_dir, img1ch);
        sobelFilter(sob_mag, sob_dir, img1ch);
        array sprd = spread(img, 3, 3);
        array hrl = hurl(img, 10, 1);
        array pckng = pick(img, 40, 2);
        array difog = DifferenceOfGaussian(img, 1, 2);
        array bil = bilateral(hrl, 3.0f, 40.0f);
        array mf = medianfilter(hrl, 5, 5);
        array gb = gaussianblur(hrl, 3, 3, 0.8);
        array emb = emboss(img, 45, 20, 10);

        af::Window wnd("Image Filters Demo");
        std::cout << "Press ESC while the window is in focus to exit" << std::endl;
        while (!wnd.close()) {
            wnd.grid(2, 5);
            wnd(0, 0).image(hrl / 255, "Hurl noise");
            wnd(1, 0).image(gb / 255, "Gaussian blur");
            wnd(0, 1).image(bil / 255, "Bilateral filter on hurl noise");
            wnd(1, 1).image(mf / 255, "Median filter on hurl noise");
            wnd(0, 2).image(prew_mag / 255, "Prewitt edge filter");
            wnd(1, 2).image(sob_mag / 255, "Sobel edge filter");
            wnd(0, 3).image(sprd / 255, "Spread filter");
            wnd(1, 3).image(pckng / 255, "Pick filter");
            wnd(0, 4).image(difog / 255, "Difference of gaussians(3x3 and 5x5)");
            wnd(1, 4).image(emb / 255, "Emboss effect");
            wnd.show();
        }

    }
    catch (af::exception& e) {
        fprintf(stderr, "%s\n", e.what());
        throw;
    }
    return 0;
}