1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
/*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <arrayfire.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <af/util.h>
#include <math.h>
#include "mnist_common.h"
using namespace af;
// Get accuracy of the predicted results
float accuracy(const array& predicted, const array& target)
{
return 100 * count<float>(predicted == target) / target.elements();
}
// Calculate all the distances from testing set to training set
array distance(array train, array test)
{
const int feat_len = train.dims(1);
const int num_train = train.dims(0);
const int num_test = test.dims(0);
array dist = constant(0, num_train, num_test);
// Iterate over each attribute
for (int ii = 0; ii < feat_len; ii++) {
// Get a attribute vectors
array train_i = train(span, ii);
array test_i = test (span, ii).T();
// Tile the vectors to generate matrices
array train_tiled = tile(train_i, 1, num_test);
array test_tiled = tile( test_i, num_train, 1 );
// Add the distance for this attribute
dist = dist + abs(train_tiled - test_tiled);
dist.eval(); // Necessary to free up train_i, test_i
}
return dist;
}
array knn(array &train_feats, array &test_feats, array &train_labels)
{
// Find distances between training and testing sets
array dist = distance(train_feats, test_feats);
// Find the neighbor producing the minimum distance
array val, idx;
min(val, idx, dist);
// Return the labels
return train_labels(idx);
}
array bagging(array &train_feats, array &test_feats, array &train_labels,
int num_classes, int num_models, int sample_size)
{
int num_train = train_feats.dims(0);
int num_test = test_feats.dims(0);
array idx = floor(randu(sample_size, num_models) * num_train);
array labels_all = constant(0, num_test, num_classes);
array off = seq(num_test);
for (int i = 0; i < num_models; i++) {
array ii = idx(span, i);
array train_feats_ii = lookup(train_feats, ii, 0);
array train_labels_ii = train_labels(ii);
// Get the predicted results
array labels_ii = knn(train_feats_ii, test_feats, train_labels_ii);
array lidx = labels_ii * num_test + off;
labels_all(lidx) = labels_all(lidx) + 1;
}
array val, labels;
max(val, labels, labels_all, 1);
return labels;
}
void bagging_demo(bool console, int perc)
{
array train_images, train_labels;
array test_images, test_labels;
int num_train, num_test, num_classes;
// Load mnist data
float frac = (float)(perc) / 100.0;
setup_mnist<false>(&num_classes, &num_train, &num_test,
train_images, test_images,
train_labels, test_labels, frac);
int feature_length = train_images.elements() / num_train;
array train_feats = moddims(train_images, feature_length, num_train).T();
array test_feats = moddims(test_images , feature_length, num_test ).T();
int num_models = 10;
int sample_size = 1000;
timer::start();
// Get the predicted results
array res_labels = bagging(train_feats, test_feats, train_labels,
num_classes, num_models, sample_size);
double test_time = timer::stop();
// Results
printf("Accuracy on testing data: %2.2f\n",
accuracy(res_labels , test_labels));
printf("Prediction time: %4.4f\n", test_time);
if (false && !console) {
display_results<false>(test_images, res_labels, test_labels.T(), 20);
}
}
int main(int argc, char** argv)
{
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
int perc = argc > 3 ? atoi(argv[3]) : 60;
try {
setDevice(device);
af::info();
bagging_demo(console, perc);
} catch (af::exception &ae) {
std::cerr << ae.what() << std::endl;
}
return 0;
}
|