1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <arrayfire.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <af/util.h>
#include <math.h>
#include "mnist_common.h"
using namespace af;
using std::vector;
float accuracy(const array& predicted, const array& target)
{
array val, plabels, tlabels;
max(val, tlabels, target, 1);
max(val, plabels, predicted, 1);
return 100 * count<float>(plabels == tlabels) / tlabels.elements();
}
// Derivative of the activation function
array deriv(const array &out)
{
return out * (1 - out);
}
// Cost function
double error(const array &out,
const array &pred)
{
array dif = (out - pred);
return sqrt((double)(sum<float>(dif * dif)));
}
array sigmoid_binary(const array in)
{
// Choosing "1" with probability sigmoid(in)
return (sigmoid(in) > randu(in.dims())).as(f32);
}
class rbm {
private:
array weights;
array h_bias;
array v_bias;
public:
rbm(int v_size, int h_size) :
weights(randu(h_size, v_size)/100.f),
h_bias(constant(0, 1, h_size)),
v_bias(constant(0, 1, v_size))
{
}
array get_weights()
{
return transpose(join(1, weights, transpose(h_bias)));
}
void train(const array &in, double lr, int num_epochs, int batch_size, bool verbose)
{
const int num_samples = in.dims(0);
const int num_batches = num_samples / batch_size;
for (int i = 0; i < num_epochs; i++) {
double err = 0;
for (int j = 0; j < num_batches - 1; j++) {
int st = j * batch_size;
int en = std::min(num_samples - 1, st + batch_size - 1);
int num = en - st + 1;
array v_pos = in(seq(st, en), span);
array h_pos = sigmoid_binary(tile(h_bias, num) +
matmulNT(v_pos, weights));
array v_neg = sigmoid_binary(tile(v_bias, num) +
matmul(h_pos, weights));
array h_neg = sigmoid_binary(tile(h_bias, num) +
matmulNT(v_neg, weights));
array c_pos = matmulTN(h_pos, v_pos);
array c_neg = matmulTN(h_neg, v_neg);
array delta_w = lr * (c_pos - c_neg) / num;
array delta_vb = lr * sum(v_pos - v_neg) / num;
array delta_hb = lr * sum(h_pos - h_neg) / num;
weights += delta_w;
v_bias += delta_vb;
h_bias += delta_hb;
if (verbose) {
err += error(v_pos, v_neg);
}
}
if (verbose) {
printf("Epoch %d: Reconstruction error: %0.4f\n", i + 1, err / num_batches);
}
}
}
array prop_up(const array &in)
{
return sigmoid(tile(h_bias, in.dims(0)) +
matmulNT(in, weights));
}
};
class dbn {
private:
const int in_size;
const int out_size;
const int num_hidden;
const int num_total;
std::vector<array> weights;
std::vector<int> hidden;
array add_bias(const array &in)
{
// Bias input is added on top of given input
return join(1, constant(1, in.dims(0), 1), in);
}
vector<array> forward_propagate(const array& input)
{
// Get activations at each layer
vector<array> signal(num_total);
signal[0] = input;
for (int i = 0; i < num_total - 1; i++) {
array in = add_bias(signal[i]);
array out = matmul(in, weights[i]);
signal[i + 1] = sigmoid(out);
}
return signal;
}
void back_propagate(const vector<array> signal,
const array &target,
const double &alpha)
{
// Get error for output layer
array out = signal[num_total - 1];
array err = (out - target);
int m = target.dims(0);
for (int i = num_total - 2; i >= 0; i--) {
array in = add_bias(signal[i]);
array delta = (deriv(out) * err).T();
// Adjust weights
array grad = -(alpha * matmul(delta, in)) / m;
weights[i] += grad.T();
// Input to current layer is output of previous
out = signal[i];
err = matmulTT(delta, weights[i]);
// Remove the error of bias and propagate backward
err = err(span, seq(1, out.dims(1)));
}
}
public:
dbn(const int in_sz, const int out_sz,
const std::vector<int> hidden_layers) :
in_size(in_sz),
out_size(out_sz),
num_hidden(hidden_layers.size()),
num_total(hidden_layers.size() + 2),
weights(hidden_layers.size() + 1),
hidden(hidden_layers)
{
}
void train(const array &input, const array &target,
double lr_rbm = 1.0,
double lr_nn = 1.0,
const int epochs_rbm = 15,
const int epochs_nn = 300,
const int batch_size = 100,
double maxerr = 1.0, bool verbose=false)
{
// Pre-training hidden layers
array X = input;
for (int i = 0; i < num_hidden; i++) {
if (verbose) {
printf("Training Hidden Layer %d\n", i);
}
int visible = (i == 0) ? in_size : hidden[i - 1];
rbm r(visible, hidden[i]);
r.train(X, lr_rbm, epochs_rbm, batch_size, verbose);
X = r.prop_up(X);
weights[i] = r.get_weights();
if (verbose) {
printf("\n");
}
}
weights[num_hidden] = 0.05 * randu(hidden[num_hidden - 1] + 1, out_size) - 0.0025;
const int num_samples = input.dims(0);
const int num_batches = num_samples / batch_size;
// Training the entire network
for (int i = 0; i < epochs_nn; i++) {
for (int j = 0; j < num_batches; j++) {
int st = j * batch_size;
int en = std::min(num_samples - 1, st + batch_size - 1);
array x = input(seq(st, en), span);
array y = target(seq(st, en), span);
// Propagate the inputs forward
vector<array> signals = forward_propagate(x);
array out = signals[num_total - 1];
// Propagate the error backward
back_propagate(signals, y, lr_nn);
}
// Validate with last batch
int st = (num_batches - 1) * batch_size;
int en = num_samples - 1;
array out = predict(input(seq(st, en), span));
double err = error(out, target(seq(st, en), span));
// Check if convergence criteria has been met
if (err < maxerr) {
printf("Converged on Epoch: %4d\n", i + 1);
return;
}
if (verbose) {
if ((i + 1) % 10 == 0) printf("Epoch: %4d, Error: %0.4f\n", i+1, err);
}
}
}
array predict(const array &input)
{
vector<array> signal = forward_propagate(input);
array out = signal[num_total - 1];
return out;
}
};
int dbn_demo(bool console, int perc)
{
printf("** ArrayFire DBN Demo **\n\n");
array train_images, test_images;
array train_target, test_target;
int num_classes, num_train, num_test;
// Load mnist data
float frac = (float)(perc) / 100.0;
setup_mnist<true>(&num_classes, &num_train, &num_test,
train_images, test_images, train_target, test_target, frac);
int feature_size = train_images.elements() / num_train;
// Reshape images into feature vectors
array train_feats = moddims(train_images, feature_size, num_train).T();
array test_feats = moddims(test_images , feature_size, num_test ).T();
train_target = train_target.T();
test_target = test_target.T();
// Network parameters
vector<int> layers;
layers.push_back(100);
layers.push_back(50);
// Create network
dbn network(train_feats.dims(1), num_classes, layers);
// Train network
timer::start();
network.train(train_feats, train_target,
0.2, // rbm learning rate
4.0, // nn learning rate
15, // rbm epochs
250, // nn epochs
100, // batch_size
0.5, // max error
true);// verbose
af::sync();
double train_time = timer::stop();
// Run the trained network and test accuracy.
array train_output = network.predict(train_feats);
array test_output = network.predict(test_feats );
// Benchmark prediction
af::sync();
timer::start();
for (int i = 0; i < 100; i++) {
network.predict(test_feats);
}
af::sync();
double test_time = timer::stop() / 100;
printf("\nTraining set:\n");
printf("Accuracy on training data: %2.2f\n",
accuracy(train_output, train_target));
printf("\nTest set:\n");
printf("Accuracy on testing data: %2.2f\n",
accuracy(test_output , test_target ));
printf("\nTraining time: %4.4lf s\n", train_time);
printf("Prediction time: %4.4lf s\n\n", test_time);
if (!console) {
// Get 20 random test images.
test_output = test_output.T();
display_results<true>(test_images, test_output, test_target.T(), 20);
}
return 0;
}
int main(int argc, char** argv)
{
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
int perc = argc > 3 ? atoi(argv[3]) : 60;
try {
af::setDevice(device);
af::info();
return dbn_demo(console, perc);
} catch (af::exception &ae) {
std::cerr << ae.what() << std::endl;
}
return 0;
}
|