1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
/*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <iostream>
#include <stdio.h>
#include <arrayfire.h>
#include <af/util.h>
#include <cstdlib>
using namespace af;
array distance(array data, array means)
{
int n = data.dims(0); // Number of features
int k = means.dims(1); // Number of means
array data2 = tile(data , 1, k, 1);
array means2 = tile(means, n, 1, 1);
// Currently using manhattan distance
// Can be replaced with other distance measures
return sum(abs(data2 - means2), 2);
}
// Get cluster id of each location in data
array clusterize(const array data, const array means)
{
// Get manhattan distance
array dists = distance(data, means);
// get the locations of minimum distance
array idx, val;
min(val, idx, dists, 1);
// Return cluster IDs
return idx;
}
array new_means(array data, array clusters, int k)
{
int d = data.dims(2);
array means = constant(0, 1, k, d);
array clustersd = tile(clusters, 1, 1, d);
gfor (seq ii, k) {
means(span, ii, span) = sum(data * (clustersd == ii)) / (sum(clusters == ii) + 1e-5);
}
return means;
}
// kmeans(means, clusters, data, k)
// data: input, 1D or 2D (range > [0-1])
// k: input, # desired means (k > 1)
// means: output, vector of means
void kmeans(array &means, array &clusters, const array in, int k, int iter=100)
{
unsigned n = in.dims(0); // Num features
unsigned d = in.dims(2); // feature length
// reshape input
array data = in * 0;
// re-center and scale down data to [0, 1]
array minimum = min(in);
array maximum = max(in);
gfor(seq ii, d) {
data(span, span, ii) = (in(span, span, ii) - minimum(ii).scalar<float>()) / maximum(ii).scalar<float>();
}
// Initial guess of means
means = randu(1, k, d);
array curr_clusters = constant(0, data.dims(0)) - 1;
array prev_clusters;
// Stop updating after specified number of iterations
for (int i = 0; i < iter; i++) {
// Store previous cluster ids
prev_clusters = curr_clusters;
// Get cluster ids for current means
curr_clusters = clusterize(data, means);
// Break early if clusters not changing
unsigned num_changed = count<unsigned>(prev_clusters != curr_clusters);
if (num_changed < (n/1000) + 1) break;
// Update current means for new clusters
means = new_means(data, curr_clusters, k);
}
// Scale up means
gfor(seq ii, d) {
means(span, span, ii) = maximum(ii) * means(span, span, ii) + minimum(ii);
}
clusters = prev_clusters;
}
// K-Means image recoloring.
// Shifts the hues of an image to the k mean hues.
int kmeans_demo(int k, bool console)
{
printf("** ArrayFire K-Means Demo (k = %d) **\n\n", k);
array img = loadImage(ASSETS_DIR"/examples/images/vegetable-woman.jpg", true) / 255; // [0-255]
int w = img.dims(0), h = img.dims(1), c = img.dims(2);
array vec = moddims(img, w * h, 1, c);
array means_full, clusters_full;
kmeans(means_full, clusters_full, vec, k);
array means_half, clusters_half;
kmeans(means_half, clusters_half, vec, k / 2);
array means_dbl, clusters_dbl;
kmeans(means_dbl, clusters_dbl, vec, k * 2);
if (!console) {
#if 0
array out_full = moddims(means_full(span, clusters_full, span), img.dims());
array out_half = moddims(means_half(span, clusters_half, span), img.dims());
array out_dbl = moddims(means_dbl (span, clusters_dbl , span), img.dims());
char str_full[32], str_half[32], str_dbl[32];
sprintf(str_full, "%2d clusters", k);
sprintf(str_half, "%2d clusters", k/2);
sprintf(str_dbl , "%2d clusters", k*2);
fig("color","default");
fig("sub",2,2,1); image(img); fig("title","input");
fig("sub",2,2,2); image(out_full); fig("title", str_full);
fig("sub",2,2,3); image(out_half); fig("title", str_half);
fig("sub",2,2,4); image(out_dbl ); fig("title", str_dbl );
printf("Hit enter to finish\n");
getchar();
#else
printf("Graphics not implemented yet\n");
#endif
} else {
means_full = moddims(means_full, means_full.dims(1), means_full.dims(2));
means_half = moddims(means_half, means_half.dims(1), means_half.dims(2));
means_dbl = moddims(means_dbl , means_dbl.dims(1) , means_dbl.dims(2) );
af_print(means_full);
af_print(means_half);
af_print(means_dbl );
}
return 0;
}
int main(int argc, char** argv)
{
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
int k = argc > 3 ? atoi(argv[3]) : 16;
try {
af::setDevice(device);
af::info();
return kmeans_demo(k, console);
} catch (af::exception &ae) {
std::cerr << ae.what() << std::endl;
}
return 0;
}
|