File: naive_bayes.cpp

package info (click to toggle)
arrayfire 3.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 109,016 kB
  • sloc: cpp: 127,909; lisp: 6,878; python: 3,923; ansic: 1,051; sh: 347; makefile: 338; xml: 175
file content (167 lines) | stat: -rw-r--r-- 5,185 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <arrayfire.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <af/util.h>
#include <math.h>
#include "mnist_common.h"

using namespace af;

// Get accuracy of the predicted results
float accuracy(const array& predicted, const array& target)
{
    return 100 * count<float>(predicted == target) / target.elements();
}

void naive_bayes_train(float *priors,
                       array &mu, array &sig2,
                       const array &train_feats,
                       const array &train_classes,
                       int num_classes)
{
    const int feat_len = train_feats.dims(0);
    const int num_samples = train_classes.elements();

    // Get mean and variance from trianing data
    mu  = constant(0, feat_len, num_classes);
    sig2 = constant(0, feat_len, num_classes);

    for (int ii = 0; ii < num_classes; ii++) {
        array idx = where(train_classes == ii);
        array train_feats_ii = lookup(train_feats, idx, 1);

        mu(span, ii)  = mean(train_feats_ii, 1);

        // Some pixels are always 0. Add a small variance.
        sig2(span,ii) = var(train_feats_ii, 0, 1) + 0.01;

        // Calculate priors
        priors[ii] = (float)idx.elements() / (float)num_samples;
    }

    mu.eval();
    sig2.eval();
}

array naive_bayes_predict(float *priors,
                          const array &mu, const array &sig2,
                          const array &test_feats, int num_classes)
{
    int num_test = test_feats.dims(1);

    // Predict the probabilities for testing data
    // Using log of probabilities to reduce rounding errors
    array log_probs = constant(1, num_test, num_classes);

    for (int ii = 0; ii < num_classes; ii++) {

        // Tile the current mean and variance to the testing data size
        array Mu  = tile(mu (span, ii), 1, num_test);
        array Sig2 = tile(sig2(span, ii), 1, num_test);

        // This is the same as log of the CDF of the normal distribution
        array Df = test_feats - Mu;
        array log_P =  (-(Df * Df) / (2 * Sig2))  - log(sqrt(2 * af::Pi * Sig2));

        // Accumulate the probabilities, multiply with priors (add log of priors)
        log_probs(span, ii) = log(priors[ii]) + sum(log_P).T();
    }

    // Get the location of the maximum value
    array val, idx;
    max(val, idx, log_probs, 1);
    return idx;
}

void benchmark_nb(const array &train_feats, const array test_feats,
                  const array &train_labels, int num_classes)
{
    array mu, sig2;
    int iter = 25;
    float *priors = new float[num_classes];

    timer::start();
    for (int i = 0; i < iter; i++) {
        naive_bayes_train(priors, mu, sig2, train_feats, train_labels, num_classes);
    }
    af::sync();
    printf("Training time: %4.4lf s\n", timer::stop() / iter);

    timer::start();
    for (int i = 0; i < iter; i++) {
        naive_bayes_predict(priors, mu, sig2, test_feats, num_classes);
    }
    af::sync();
    printf("Prediction time: %4.4lf s\n", timer::stop() / iter);

    delete[] priors;
}

void naive_bayes_demo(bool console, int perc)
{
    array train_images, train_labels;
    array test_images, test_labels;
    int num_train, num_test, num_classes;

    // Load mnist data
    float frac = (float)(perc) / 100.0;
    setup_mnist<false>(&num_classes, &num_train, &num_test,
                       train_images, test_images,
                       train_labels, test_labels, frac);

    int feature_length = train_images.elements() / num_train;
    array train_feats = moddims(train_images, feature_length, num_train);
    array test_feats  = moddims(test_images , feature_length, num_test );

    // Get training parameters
    array mu, sig2;
    float *priors = new float[num_classes];
    naive_bayes_train(priors, mu, sig2, train_feats, train_labels, num_classes);

    // Predict the classes
    array res_labels = naive_bayes_predict(priors, mu, sig2, test_feats, num_classes);
    delete[] priors;

    // Results
    printf("Trainng samples: %4d, Testing samples: %4d\n", num_train, num_test);
    printf("Accuracy on testing  data: %2.2f\n",
           accuracy(res_labels , test_labels));

    benchmark_nb(train_feats, test_feats, train_labels, num_classes);

    if (!console) {
        test_images = test_images.T();
        test_labels = test_labels.T();
        // FIXME: Crashing in mnist_common.h::classify
        //display_results<false>(test_images, res_labels, test_labels , 20);
    }
}

int main(int argc, char** argv)
{
    int device   = argc > 1 ? atoi(argv[1]) : 0;
    bool console = argc > 2 ? argv[2][0] == '-' : false;
    int perc     = argc > 3 ? atoi(argv[3]) : 60;

    try {

        af::setDevice(device);
        af::info();
        naive_bayes_demo(console, perc);

    } catch (af::exception &ae) {
        std::cerr << ae.what() << std::endl;
    }

    return 0;
}