1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
/*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <arrayfire.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <af/util.h>
#include <math.h>
#include "mnist_common.h"
using namespace af;
using std::vector;
float accuracy(const array& predicted, const array& target)
{
array val, plabels, tlabels;
max(val, tlabels, target, 1);
max(val, plabels, predicted, 1);
return 100 * count<float>(plabels == tlabels) / tlabels.elements();
}
// Derivative of the activation function
array deriv(const array &out)
{
return out * (1 - out);
}
// Cost function
double error(const array &out,
const array &pred)
{
array dif = (out - pred);
return sqrt((double)(sum<float>(dif * dif)));
}
class ann {
private:
int num_layers;
vector<array> weights;
// Add bias input to the output from previous layer
array add_bias(const array &in);
vector<array> forward_propagate(const array& input);
void back_propagate(const vector<array> signal,
const array &pred,
const double &alpha);
public:
// Create a network with given parameters
ann(vector<int> layers, double range=0.05);
// Output after single pass of forward propagation
array predict(const array &input);
// Method to trian the neural net
double train(const array &input, const array &target,
double alpha = 1.0,
int max_epochs = 300,
int batch_size = 100,
double maxerr = 1.0,
bool verbose = false);
};
array ann::add_bias(const array &in)
{
// Bias input is added on top of given input
return join(1, constant(1, in.dims(0), 1), in);
}
vector<array> ann::forward_propagate(const array& input)
{
// Get activations at each layer
vector<array> signal(num_layers);
signal[0] = input;
for (int i = 0; i < num_layers - 1; i++) {
array in = add_bias(signal[i]);
array out = matmul(in, weights[i]);
signal[i + 1] = sigmoid(out);
}
return signal;
}
void ann::back_propagate(const vector<array> signal,
const array &target,
const double &alpha)
{
// Get error for output layer
array out = signal[num_layers - 1];
array err = (out - target);
int m = target.dims(0);
for (int i = num_layers - 2; i >= 0; i--) {
array in = add_bias(signal[i]);
array delta = (deriv(out) * err).T();
// Adjust weights
array grad = -(alpha * matmul(delta, in)) / m;
weights[i] += grad.T();
// Input to current layer is output of previous
out = signal[i];
err = matmulTT(delta, weights[i]);
// Remove the error of bias and propagate backward
err = err(span, seq(1, out.dims(1)));
}
}
ann::ann(vector<int> layers, double range) :
num_layers(layers.size()),
weights(layers.size() - 1)
{
// Generate uniformly distributed random numbers between [-range/2,range/2]
for (int i = 0; i < num_layers - 1; i++) {
weights[i] = range * randu(layers[i] + 1, layers[i + 1]) - range/2;
}
}
array ann::predict(const array &input)
{
vector<array> signal = forward_propagate(input);
array out = signal[num_layers - 1];
return out;
}
double ann::train(const array &input, const array &target,
double alpha, int max_epochs, int batch_size,
double maxerr, bool verbose)
{
const int num_samples = input.dims(0);
const int num_batches = num_samples / batch_size;
double err = 0;
// Training the entire network
for (int i = 0; i < max_epochs; i++) {
for (int j = 0; j < num_batches - 1; j++) {
int st = j * batch_size;
int en = st + batch_size - 1;
array x = input(seq(st, en), span);
array y = target(seq(st, en), span);
// Propagate the inputs forward
vector<array> signals = forward_propagate(x);
array out = signals[num_layers - 1];
// Propagate the error backward
back_propagate(signals, y, alpha);
}
// Validate with last batch
int st = (num_batches - 1) * batch_size;
int en = num_samples - 1;
array out = predict(input(seq(st, en), span));
err = error(out, target(seq(st, en), span));
// Check if convergence criteria has been met
if (err < maxerr) {
printf("Converged on Epoch: %4d\n", i + 1);
return err;
}
if (verbose) {
if ((i + 1) % 10 == 0) printf("Epoch: %4d, Error: %0.4f\n", i+1, err);
}
}
return err;
}
int ann_demo(bool console, int perc)
{
printf("** ArrayFire ANN Demo **\n\n");
array train_images, test_images;
array train_target, test_target;
int num_classes, num_train, num_test;
// Load mnist data
float frac = (float)(perc) / 100.0;
setup_mnist<true>(&num_classes, &num_train, &num_test,
train_images, test_images, train_target, test_target, frac);
int feature_size = train_images.elements() / num_train;
// Reshape images into feature vectors
array train_feats = moddims(train_images, feature_size, num_train).T();
array test_feats = moddims(test_images , feature_size, num_test ).T();
train_target = train_target.T();
test_target = test_target.T();
// Network parameters
vector<int> layers;
layers.push_back(train_feats.dims(1));
layers.push_back(100);
layers.push_back(50);
layers.push_back(num_classes);
// Create network
ann network(layers);
// Train network
timer::start();
network.train(train_feats, train_target,
2.0, // learning rate / alpha
250, // max epochs
100, // batch size
0.5, // max error
true); // verbose
af::sync();
double train_time = timer::stop();
// Run the trained network and test accuracy.
array train_output = network.predict(train_feats);
array test_output = network.predict(test_feats );
// Benchmark prediction
af::sync();
timer::start();
for (int i = 0; i < 100; i++) {
network.predict(test_feats);
}
af::sync();
double test_time = timer::stop() / 100;
printf("\nTraining set:\n");
printf("Accuracy on training data: %2.2f\n",
accuracy(train_output, train_target));
printf("\nTest set:\n");
printf("Accuracy on testing data: %2.2f\n",
accuracy(test_output , test_target ));
printf("\nTraining time: %4.4lf s\n", train_time);
printf("Prediction time: %4.4lf s\n\n", test_time);
if (!console) {
// Get 20 random test images.
test_output = test_output.T();
display_results<true>(test_images, test_output, test_target.T(), 20);
}
return 0;
}
int main(int argc, char** argv)
{
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
int perc = argc > 3 ? atoi(argv[3]) : 60;
try {
af::setDevice(device);
af::info();
return ann_demo(console, perc);
} catch (af::exception &ae) {
std::cerr << ae.what() << std::endl;
}
return 0;
}
|