File: neural_network.cpp

package info (click to toggle)
arrayfire 3.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 109,016 kB
  • sloc: cpp: 127,909; lisp: 6,878; python: 3,923; ansic: 1,051; sh: 347; makefile: 338; xml: 175
file content (282 lines) | stat: -rw-r--r-- 7,665 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <arrayfire.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <af/util.h>
#include <math.h>
#include "mnist_common.h"

using namespace af;
using std::vector;

float accuracy(const array& predicted, const array& target)
{
    array val, plabels, tlabels;
    max(val, tlabels, target, 1);
    max(val, plabels, predicted, 1);
    return 100 * count<float>(plabels == tlabels) / tlabels.elements();
}

// Derivative of the activation function
array deriv(const array &out)
{
    return out * (1 - out);
}

// Cost function
double error(const array &out,
             const array &pred)
{
    array dif = (out - pred);
    return sqrt((double)(sum<float>(dif * dif)));
}

class ann {

private:
    int num_layers;
    vector<array> weights;

    // Add bias input to the output from previous layer
    array add_bias(const array &in);

    vector<array> forward_propagate(const array& input);

    void back_propagate(const vector<array> signal,
                        const array &pred,
                        const double &alpha);
public:

    // Create a network with given parameters
    ann(vector<int> layers, double range=0.05);

    // Output after single pass of forward propagation
    array predict(const array &input);

    // Method to trian the neural net
    double train(const array &input, const array &target,
                 double alpha = 1.0,
                 int max_epochs = 300,
                 int batch_size = 100,
                 double maxerr = 1.0,
                 bool verbose = false);
};

array ann::add_bias(const array &in)
{
    // Bias input is added on top of given input
    return join(1, constant(1, in.dims(0), 1), in);
}

vector<array> ann::forward_propagate(const array& input)
{
    // Get activations at each layer
    vector<array> signal(num_layers);
    signal[0] = input;

    for (int i = 0; i < num_layers - 1; i++) {
        array in = add_bias(signal[i]);
        array out = matmul(in, weights[i]);
        signal[i + 1] = sigmoid(out);
    }

    return signal;
}

void ann::back_propagate(const vector<array> signal,
                         const array &target,
                         const double &alpha)
{

    // Get error for output layer
    array out = signal[num_layers  - 1];
    array err = (out - target);
    int m = target.dims(0);

    for (int i = num_layers - 2; i >= 0; i--) {
        array in = add_bias(signal[i]);
        array delta = (deriv(out) * err).T();

        // Adjust weights
        array grad = -(alpha * matmul(delta, in)) / m;
        weights[i] += grad.T();

        // Input to current layer is output of previous
        out = signal[i];
        err = matmulTT(delta, weights[i]);

        // Remove the error of bias and propagate backward
        err = err(span, seq(1, out.dims(1)));
    }
}

ann::ann(vector<int> layers, double range) :
    num_layers(layers.size()),
    weights(layers.size() - 1)
{
    // Generate uniformly distributed random numbers between [-range/2,range/2]
    for (int i = 0; i < num_layers - 1; i++) {
        weights[i] = range * randu(layers[i] + 1, layers[i + 1]) - range/2;
    }
}

array ann::predict(const array &input)
{
    vector<array> signal = forward_propagate(input);
    array out = signal[num_layers - 1];
    return out;
}

double ann::train(const array &input, const array &target,
                  double alpha, int max_epochs, int batch_size,
                  double maxerr, bool verbose)
{

    const int num_samples = input.dims(0);
    const int num_batches = num_samples / batch_size;

    double err = 0;

    // Training the entire network
    for (int i = 0; i < max_epochs; i++) {

        for (int j = 0; j < num_batches - 1; j++) {

            int st = j * batch_size;
            int en = st + batch_size - 1;

            array x = input(seq(st, en), span);
            array y = target(seq(st, en), span);

            // Propagate the inputs forward
            vector<array> signals = forward_propagate(x);
            array out = signals[num_layers - 1];


            // Propagate the error backward
            back_propagate(signals, y, alpha);
        }

        // Validate with last batch
        int st = (num_batches - 1) * batch_size;
        int en = num_samples - 1;
        array out = predict(input(seq(st, en), span));
        err = error(out, target(seq(st, en), span));

        // Check if convergence criteria has been met
        if (err < maxerr) {
            printf("Converged on Epoch: %4d\n", i + 1);
            return err;
        }

        if (verbose) {
            if ((i + 1) % 10 == 0) printf("Epoch: %4d, Error: %0.4f\n", i+1, err);
        }
    }
    return err;
}

int ann_demo(bool console, int perc)
{
    printf("** ArrayFire ANN Demo **\n\n");

    array train_images, test_images;
    array train_target, test_target;
    int num_classes, num_train, num_test;

    // Load mnist data
    float frac = (float)(perc) / 100.0;
    setup_mnist<true>(&num_classes, &num_train, &num_test,
                      train_images, test_images, train_target, test_target, frac);

    int feature_size = train_images.elements() / num_train;

    // Reshape images into feature vectors
    array train_feats = moddims(train_images, feature_size, num_train).T();
    array test_feats  = moddims(test_images , feature_size, num_test ).T();

    train_target = train_target.T();
    test_target  = test_target.T();

    // Network parameters
    vector<int> layers;
    layers.push_back(train_feats.dims(1));
    layers.push_back(100);
    layers.push_back(50);
    layers.push_back(num_classes);

    // Create network
    ann network(layers);

    // Train network
    timer::start();
    network.train(train_feats, train_target,
                  2.0, // learning rate / alpha
                  250, // max epochs
                  100, // batch size
                  0.5, // max error
                  true); // verbose
    af::sync();
    double train_time = timer::stop();

    // Run the trained network and test accuracy.
    array train_output = network.predict(train_feats);
    array test_output  = network.predict(test_feats );


    // Benchmark prediction
    af::sync();
    timer::start();
    for (int i = 0; i < 100; i++) {
        network.predict(test_feats);
    }
    af::sync();
    double test_time = timer::stop() / 100;

    printf("\nTraining set:\n");
    printf("Accuracy on training data: %2.2f\n",
           accuracy(train_output, train_target));

    printf("\nTest set:\n");
    printf("Accuracy on testing  data: %2.2f\n",
           accuracy(test_output , test_target ));

    printf("\nTraining time: %4.4lf s\n", train_time);
    printf("Prediction time: %4.4lf s\n\n", test_time);

    if (!console) {
        // Get 20 random test images.
        test_output = test_output.T();
        display_results<true>(test_images, test_output, test_target.T(), 20);
    }

    return 0;
}

int main(int argc, char** argv)
{
    int device   = argc > 1 ? atoi(argv[1]) : 0;
    bool console = argc > 2 ? argv[2][0] == '-' : false;
    int perc     = argc > 3 ? atoi(argv[3]) : 60;

    try {

        af::setDevice(device);
        af::info();
        return ann_demo(console, perc);

    } catch (af::exception &ae) {
        std::cerr << ae.what() << std::endl;
    }

    return 0;
}