1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <arrayfire.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <af/util.h>
#include <math.h>
#include "mnist_common.h"
using namespace af;
float accuracy(const array& predicted, const array& target)
{
array val, plabels, tlabels;
max(val, tlabels, target, 1);
max(val, plabels, predicted, 1);
return 100 * count<float>(plabels == tlabels) / tlabels.elements();
}
// Predict based on given parameters
array predict(const array &X, const array &Weights)
{
return sigmoid(matmul(X, Weights));
}
array train(const array &X, const array &Y,
double alpha = 0.1,
double maxerr = 0.05,
int maxiter = 1000, bool verbose = false)
{
// Initialize parameters to 0
array Weights = constant(0, X.dims(1), Y.dims(1));
for (int i = 0; i < maxiter; i++) {
array P = predict(X, Weights);
array err = Y - P;
float mean_abs_err = mean<float>(abs(err));
if (mean_abs_err < maxerr) break;
if (verbose && (i + 1) % 25 == 0) {
printf("Iter: %d, Err: %.4f\n", i + 1, mean_abs_err);
}
Weights = Weights + alpha * matmulTN(X, err);
}
return Weights;
}
void benchmark_perceptron(const array &train_feats,
const array &train_targets,
const array test_feats)
{
timer::start();
array Weights = train(train_feats, train_targets, 0.1, 0.01, 1000);
af::sync();
printf("Training time: %4.4lf s\n", timer::stop());
timer::start();
const int iter = 100;
for (int i = 0; i < iter; i++) {
array test_outputs = predict(test_feats , Weights);
test_outputs.eval();
}
af::sync();
printf("Prediction time: %4.4lf s\n", timer::stop() / iter);
}
// Demo of one vs all logistic regression
int perceptron_demo(bool console, int perc)
{
array train_images, train_targets;
array test_images, test_targets;
int num_train, num_test, num_classes;
// Load mnist data
float frac = (float)(perc) / 100.0;
setup_mnist<true>(&num_classes, &num_train, &num_test,
train_images, test_images,
train_targets, test_targets, frac);
// Reshape images into feature vectors
int feature_length = train_images.elements() / num_train;
array train_feats = moddims(train_images, feature_length, num_train).T();
array test_feats = moddims(test_images , feature_length, num_test ).T();
train_targets = train_targets.T();
test_targets = test_targets.T();
// Add a bias that is always 1
train_feats = join(1, constant(1, num_train, 1), train_feats);
test_feats = join(1, constant(1, num_test , 1), test_feats );
// Train logistic regression parameters
array Weights = train(train_feats, train_targets, 0.1, 0.01, 1000, true);
// Predict the results
array train_outputs = predict(train_feats, Weights);
array test_outputs = predict(test_feats , Weights);
printf("Accuracy on training data: %2.2f\n",
accuracy(train_outputs, train_targets ));
printf("Accuracy on testing data: %2.2f\n",
accuracy(test_outputs , test_targets ));
benchmark_perceptron(train_feats, train_targets, test_feats);
if (!console) {
test_outputs = test_outputs.T();
test_targets = test_targets.T();
// Get 20 random test images.
display_results<true>(test_images, test_outputs, test_targets, 20);
}
return 0;
}
int main(int argc, char** argv)
{
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
int perc = argc > 3 ? atoi(argv[3]) : 60;
try {
af::setDevice(device);
af::info();
return perceptron_demo(console, perc);
} catch (af::exception &ae) {
std::cerr << ae.what() << std::endl;
}
return 0;
}
|