File: rbm.cpp

package info (click to toggle)
arrayfire 3.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 109,016 kB
  • sloc: cpp: 127,909; lisp: 6,878; python: 3,923; ansic: 1,051; sh: 347; makefile: 338; xml: 175
file content (232 lines) | stat: -rw-r--r-- 5,764 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <arrayfire.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <af/util.h>
#include <math.h>
#include "mnist_common.h"

using namespace af;
using std::vector;

float accuracy(const array& predicted, const array& target)
{
    array val, plabels, tlabels;
    max(val, tlabels, target, 1);
    max(val, plabels, predicted, 1);
    return 100 * count<float>(plabels == tlabels) / tlabels.elements();
}

// Derivative of the activation function
array deriv(const array &out)
{
    return out * (1 - out);
}

// Cost function
double error(const array &out,
             const array &pred)
{
    array dif = (out - pred);
    return sqrt((double)(sum<float>(dif * dif)));
}

array binary(const array in)
{
    // Choosing "1" with probability sigmoid(in)
    return (in > randu(in.dims())).as(f32);
}

class rbm {

private:
    array weights;
    array h_bias;
    array v_bias;

    // Add bias input to the output from previous layer
    array vtoh(const array &v)
    {
        return binary(prop_up(v));
    }

    array htov(const array &h)
    {
        return binary(prop_down(h));
    }

public:

    rbm() {}

    rbm(int v_size, int h_size) :
        weights(randu(h_size, v_size)/100 - 0.05),
        h_bias(constant(0, 1, h_size)),
        v_bias(constant(0, 1, v_size))
    {
    }

    array prop_up(const array &v)
    {
        array h_bias_tile = tile(h_bias, v.dims(0));
        return sigmoid(h_bias_tile + matmulNT(v, weights));
    }

    array prop_down(const array &h)
    {
        array v_bias_tile = tile(v_bias, h.dims(0));
        return sigmoid(v_bias_tile + matmul(h, weights));
    }

    void gibbs_vhv(array &vt, array &ht, const array &v, int k = 1)
    {
        vt = v;
        for (int i = 0; i < k; i++) {
            ht = vtoh(vt);
            vt = htov(ht);
        }
    }

    void gibbs_hvh(array &vt, array &ht, const array &h, int k = 1)
    {
        ht = h;
        for (int i = 0; i < k; i++) {
            vt = htov(ht);
            ht = vtoh(vt);
        }
    }

    void train(const array &in,
               double lr = 0.1,
               int num_epochs = 15,
               int batch_size = 100,
               int k = 1, bool verbose = false)
    {
        const int num_samples = in.dims(0);
        const int num_batches = num_samples / batch_size;

        for (int i = 0; i <  num_epochs; i++) {

            double err = 0;

            for (int j = 0; j < num_batches - 1; j++) {

                int st = j * batch_size;
                int en = std::min(num_samples - 1, st + batch_size - 1);
                int num = en - st + 1;

                array v_pos = in(seq(st, en), span);

                array h_pos = vtoh(v_pos);

                array v_neg, h_neg;

                gibbs_hvh(v_neg, h_neg, h_pos, k);

                // Update weights
                array c_pos = matmulTN(h_pos, v_pos);
                array c_neg = matmulTN(h_neg, v_neg);

                array delta_w = lr * (c_pos - c_neg) / num;
                array delta_vb = lr * sum(v_pos - v_neg) / num;
                array delta_hb = lr * sum(h_pos - h_neg) / num;

                weights += delta_w;
                v_bias += delta_vb;
                h_bias += delta_hb;

                if (verbose) {
                    err += error(v_pos, v_neg);
                }
            }

            if (verbose) {
                printf("Epoch %d: Reconstruction error: %0.4f\n", i + 1, err / num_batches);
            }
        }

        if (verbose) printf("\n");
    }
};

int rbm_demo(bool console, int perc)
{
    printf("** ArrayFire RBM Demo **\n\n");

    array train_images, test_images;
    array train_target, test_target;
    int num_classes, num_train, num_test;

    // Load mnist data
    float frac = (float)(perc) / 100.0;
    setup_mnist<true>(&num_classes, &num_train, &num_test,
                      train_images, test_images, train_target, test_target, frac);

    dim4 dims = train_images.dims();

    int feature_size = train_images.elements() / num_train;

    // Reshape images into feature vectors
    array train_feats = moddims(train_images, feature_size, num_train).T();
    array test_feats  = moddims(test_images , feature_size, num_test ).T();

    train_target = train_target.T();
    test_target  = test_target.T();

    rbm network(train_feats.dims(1), 2000);

    network.train(train_feats,
                  0.1, // learning rate
                  15,  // num epochs
                  100, // batch size
                  1,   // k
                  true);

    // Test reconstructed images
    for (int ii = 0; ii < 5; ii++) {

        array in = test_feats(ii, span);
        array res, tmp;

        network.gibbs_vhv(res, tmp, in);

        in  = moddims(in , dims[0], dims[1]);
        res = moddims(res, dims[0], dims[1]);

        in = round(in);
        res = round(res);

        printf("Reconstructed Error for image %2d: %.4f\n", ii,
               sum<float>(abs(in - res)) / feature_size);
    }

    return 0;
}

int main(int argc, char** argv)
{
    int device   = argc > 1 ? atoi(argv[1]) : 0;
    bool console = argc > 2 ? argv[2][0] == '-' : false;
    int perc     = argc > 3 ? atoi(argv[3]) : 60;

    try {

        af::setDevice(device);
        af::info();
        return rbm_demo(console, perc);

    } catch (af::exception &ae) {
        std::cerr << ae.what() << std::endl;
    }

    return 0;
}