1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <arrayfire.h>
#include <stdio.h>
#include <vector>
#include <string>
#include <af/util.h>
#include <math.h>
#include "mnist_common.h"
using namespace af;
using std::vector;
float accuracy(const array& predicted, const array& target)
{
array val, plabels, tlabels;
max(val, tlabels, target, 1);
max(val, plabels, predicted, 1);
return 100 * count<float>(plabels == tlabels) / tlabels.elements();
}
// Derivative of the activation function
array deriv(const array &out)
{
return out * (1 - out);
}
// Cost function
double error(const array &out,
const array &pred)
{
array dif = (out - pred);
return sqrt((double)(sum<float>(dif * dif)));
}
array binary(const array in)
{
// Choosing "1" with probability sigmoid(in)
return (in > randu(in.dims())).as(f32);
}
class rbm {
private:
array weights;
array h_bias;
array v_bias;
// Add bias input to the output from previous layer
array vtoh(const array &v)
{
return binary(prop_up(v));
}
array htov(const array &h)
{
return binary(prop_down(h));
}
public:
rbm() {}
rbm(int v_size, int h_size) :
weights(randu(h_size, v_size)/100 - 0.05),
h_bias(constant(0, 1, h_size)),
v_bias(constant(0, 1, v_size))
{
}
array prop_up(const array &v)
{
array h_bias_tile = tile(h_bias, v.dims(0));
return sigmoid(h_bias_tile + matmulNT(v, weights));
}
array prop_down(const array &h)
{
array v_bias_tile = tile(v_bias, h.dims(0));
return sigmoid(v_bias_tile + matmul(h, weights));
}
void gibbs_vhv(array &vt, array &ht, const array &v, int k = 1)
{
vt = v;
for (int i = 0; i < k; i++) {
ht = vtoh(vt);
vt = htov(ht);
}
}
void gibbs_hvh(array &vt, array &ht, const array &h, int k = 1)
{
ht = h;
for (int i = 0; i < k; i++) {
vt = htov(ht);
ht = vtoh(vt);
}
}
void train(const array &in,
double lr = 0.1,
int num_epochs = 15,
int batch_size = 100,
int k = 1, bool verbose = false)
{
const int num_samples = in.dims(0);
const int num_batches = num_samples / batch_size;
for (int i = 0; i < num_epochs; i++) {
double err = 0;
for (int j = 0; j < num_batches - 1; j++) {
int st = j * batch_size;
int en = std::min(num_samples - 1, st + batch_size - 1);
int num = en - st + 1;
array v_pos = in(seq(st, en), span);
array h_pos = vtoh(v_pos);
array v_neg, h_neg;
gibbs_hvh(v_neg, h_neg, h_pos, k);
// Update weights
array c_pos = matmulTN(h_pos, v_pos);
array c_neg = matmulTN(h_neg, v_neg);
array delta_w = lr * (c_pos - c_neg) / num;
array delta_vb = lr * sum(v_pos - v_neg) / num;
array delta_hb = lr * sum(h_pos - h_neg) / num;
weights += delta_w;
v_bias += delta_vb;
h_bias += delta_hb;
if (verbose) {
err += error(v_pos, v_neg);
}
}
if (verbose) {
printf("Epoch %d: Reconstruction error: %0.4f\n", i + 1, err / num_batches);
}
}
if (verbose) printf("\n");
}
};
int rbm_demo(bool console, int perc)
{
printf("** ArrayFire RBM Demo **\n\n");
array train_images, test_images;
array train_target, test_target;
int num_classes, num_train, num_test;
// Load mnist data
float frac = (float)(perc) / 100.0;
setup_mnist<true>(&num_classes, &num_train, &num_test,
train_images, test_images, train_target, test_target, frac);
dim4 dims = train_images.dims();
int feature_size = train_images.elements() / num_train;
// Reshape images into feature vectors
array train_feats = moddims(train_images, feature_size, num_train).T();
array test_feats = moddims(test_images , feature_size, num_test ).T();
train_target = train_target.T();
test_target = test_target.T();
rbm network(train_feats.dims(1), 2000);
network.train(train_feats,
0.1, // learning rate
15, // num epochs
100, // batch size
1, // k
true);
// Test reconstructed images
for (int ii = 0; ii < 5; ii++) {
array in = test_feats(ii, span);
array res, tmp;
network.gibbs_vhv(res, tmp, in);
in = moddims(in , dims[0], dims[1]);
res = moddims(res, dims[0], dims[1]);
in = round(in);
res = round(res);
printf("Reconstructed Error for image %2d: %.4f\n", ii,
sum<float>(abs(in - res)) / feature_size);
}
return 0;
}
int main(int argc, char** argv)
{
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
int perc = argc > 3 ? atoi(argv[3]) : 60;
try {
af::setDevice(device);
af::info();
return rbm_demo(console, perc);
} catch (af::exception &ae) {
std::cerr << ae.what() << std::endl;
}
return 0;
}
|