File: arith.h

package info (click to toggle)
arrayfire 3.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 109,016 kB
  • sloc: cpp: 127,909; lisp: 6,878; python: 3,923; ansic: 1,051; sh: 347; makefile: 338; xml: 175
file content (1360 lines) | stat: -rw-r--r-- 42,788 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <af/defines.h>

#ifdef __cplusplus
namespace af
{
    class array;

    /// \ingroup arith_func_min
    /// @{
    /// \brief C++ interface for min of two arrays
    ///
    /// \param[in] lhs first input
    /// \param[in] rhs second input
    /// \return minimum of \p lhs and \p rhs
    ///
    AFAPI array min    (const array &lhs, const array &rhs);

    /// \copydoc min(const array&, const array &)
    AFAPI array min    (const array &lhs, const double rhs);

    /// \copydoc min(const array&, const array &)
    AFAPI array min    (const double lhs, const array &rhs);
    /// @}

    /// \ingroup arith_func_max
    /// @{
    /// C++ Interface for max of two arrays or an array and a scalar
    ///
    /// \param[in] lhs first input
    /// \param[in] rhs second input
    /// \return maximum of \p lhs and \p rhs
    AFAPI array max    (const array &lhs, const array &rhs);

    /// \copydoc max(const array&, const array&)
    AFAPI array max    (const array &lhs, const double rhs);

    /// \copydoc max(const array&, const array&)
    AFAPI array max    (const double lhs, const array &rhs);
    /// @}

    /// \ingroup arith_func_rem
    /// @{
    /// C++ Interface for remainder when array divides array,
    /// scalar divides array or array divides scalar
    ///
    /// \param[in] lhs is numerator
    /// \param[in] rhs is denominator
    /// \return remainder when \p rhs divides \p lhs
    AFAPI array rem    (const array &lhs, const array &rhs);

    /// \copydoc rem(const array&, const array&)
    AFAPI array rem    (const array &lhs, const double rhs);

    /// \copydoc rem(const array&, const array&)
    AFAPI array rem    (const double lhs, const array &rhs);
    /// @}

    /// \ingroup arith_func_mod
    /// @{
    /// C++ Interface for modulus when dividend and divisor are arrays
    /// or one of them is scalar
    ///
    /// \param[in] lhs is dividend
    /// \param[in] rhs is divisor
    /// \return \p lhs modulo \p rhs
    AFAPI array mod    (const array &lhs, const array &rhs);

    /// \copydoc mod(const array&, const array&)
    AFAPI array mod    (const array &lhs, const double rhs);

    /// \copydoc mod(const array&, const array&)
    AFAPI array mod    (const double lhs, const array &rhs);
    /// @}

    /// C++ Interface for absolute value
    ///
    /// \param[in] in is input array
    /// \return absolute value of \p in
    ///
    /// \ingroup arith_func_abs
    AFAPI array abs    (const array &in);

    /**
       C++ Interface for arg

       \param[in] in is input array
       \return phase of \p in

       \ingroup arith_func_arg
    */
    AFAPI array arg    (const array &in);

    /**
       C++ Interface for getting the sign of input

       \param[in] in is input array
       \return the sign of each element of input

       \note output is 1 for negative numbers and 0 for positive numbers

       \ingroup arith_func_sign
    */
    AFAPI array sign  (const array &in);

    ///C++ Interface for rounding an array of numbers
    ///
    ///\param[in] in is input array
    ///\return values rounded to nearest integer
    ///
    ///\note The values are rounded to nearest integer
    ///
    ///\ingroup arith_func_round
    AFAPI array round  (const array &in);

    /**
       C++ Interface for truncating an array of numbers

       \param[in] in is input array
       \return values truncated to nearest integer not greater than input values

       \ingroup arith_func_trunc
    */
    AFAPI array trunc  (const array &in);


    /// C++ Interface for flooring an array of numbers
    ///
    /// \param[in] in is input array
    /// \return values rounded to nearest integer less than or equal to current value
    ///
    /// \ingroup arith_func_floor
    AFAPI array floor  (const array &in);

    /// C++ Interface for ceiling an array of numbers
    ///
    /// \param[in] in is input array
    /// \return values rounded to nearest integer greater than or equal to current value
    ///
    /// \ingroup arith_func_ceil
    AFAPI array ceil   (const array &in);

    /// \ingroup arith_func_hypot
    /// @{
    /// \brief C++ Interface for getting length of hypotenuse of two inputs
    ///
    /// Calculates the hypotenuse of two inputs. The inputs can be both arrays
    /// or an array and a scalar.
    ///
    /// \param[in] lhs is the length of first side
    /// \param[in] rhs is the length of second side
    /// \return the length of the hypotenuse
    AFAPI array hypot  (const array &lhs, const array &rhs);

    /// \copydoc hypot(const array&, const array&)
    AFAPI array hypot  (const array &lhs, const double rhs);

    /// \copydoc hypot(const array&, const array&)
    AFAPI array hypot  (const double lhs, const array &rhs);
    /// @}

    /// C++ Interface for sin
    ///
    /// \param[in] in is input array
    /// \return sin of input
    ///
    /// \ingroup arith_func_sin
    AFAPI array sin    (const array &in);

    /// C++ Interface for cos
    ///
    /// \param[in] in is input array
    /// \return cos of input
    ///
    /// \ingroup arith_func_cos
    AFAPI array cos    (const array &in);

    /// C++ Interface for tan
    ///
    /// \param[in] in is input array
    /// \return tan of input
    ///
    /// \ingroup arith_func_tan
    AFAPI array tan    (const array &in);

    /// C++ Interface for arc sin (sin inverse)
    ///
    /// \param[in] in is input array
    /// \return arc sin of input
    ///
    /// \ingroup arith_func_asin
    AFAPI array asin   (const array &in);

    /// C++ Interface for arc cos (cos inverse)
    ///
    /// \param[in] in is input array
    /// \return arc cos of input
    ///
    /// \ingroup arith_func_acos
    AFAPI array acos   (const array &in);

    /// C++ Interface for arc tan (tan inverse)
    ///
    /// \param[in] in is input array
    /// \return arc tan of input
    ///
    /// \ingroup arith_func_atan
    AFAPI array atan   (const array &in);

    /// \ingroup arith_func_atan
    /// @{
    /// C++ Interface for arc tan of two arrays
    ///
    /// \param[in] lhs value of numerator
    /// \param[in] rhs value of denominator
    /// \return arc tan of the inputs
    AFAPI array atan2  (const array &lhs, const array &rhs);

    /// \copydoc atan2(const array&, const array&)
    AFAPI array atan2  (const array &lhs, const double rhs);

    /// \copydoc atan2(const array&, const array&)
    AFAPI array atan2  (const double lhs, const array &rhs);
    /// @}

    /// \ingroup trig_func_cplx2
    /// @{
    /// C++ Interface for creating complex array from two inputs
    ///
    /// Creates a complex number from two sets of inputs. The left hand side is
    /// the real part and the right hand side is the imaginary part. This
    /// function accepts two \ref af::array or one \ref af::array and a scalar
    /// as nputs.
    ///
    /// \param[in] lhs is real value(s)
    /// \param[in] rhs is imaginary value(s)
    /// \return complex array from inputs
    /// \ingroup arith_func_cplx
    AFAPI array complex(const array &lhs, const array &rhs);

    /// \copydoc complex(const array&, const array&)
    /// \ingroup arith_func_cplx
    AFAPI array complex(const array &lhs, const double rhs);

    /// \copydoc complex(const array&, const array&)
    /// \ingroup arith_func_cplx
    AFAPI array complex(const double lhs, const array &rhs);

    /// C++ Interface for creating complex array from real array
    ///
    /// \param[in] in is real array
    /// \return complex array from \p in
    ///
    /// \ingroup arith_func_cplx
    AFAPI array complex(const array &in);
    /// @}

    /// C++ Interface for getting real part from complex array
    ///
    /// \param[in] in is complex array
    /// \return the real part of \p in
    ///
    /// \ingroup arith_func_real
    AFAPI array real   (const array &in);

    /// C++ Interface for getting imaginary part from complex array
    ///
    /// \param[in] in is complex array
    /// \return the imaginary part of \p in
    ///
    /// \ingroup arith_func_imag
    AFAPI array imag   (const array &in);

    /// C++ Interface for getting the complex conjugate of input array
    ///
    /// \param[in] in is complex array
    /// \return the complex conjugate of \p in
    ///
    /// \ingroup arith_func_conjg
    AFAPI array conjg  (const array &in);

    /// C++ Interface for sinh
    ///
    /// \param[in] in is input array
    /// \return sinh of input
    ///
    /// \ingroup arith_func_sinh
    AFAPI array sinh    (const array &in);

    /// C++ Interface for cosh
    ///
    /// \param[in] in is input array
    /// \return cosh of input
    ///
    /// \ingroup arith_func_cosh
    AFAPI array cosh    (const array &in);

    /// C++ Interface for tanh
    ///
    /// \param[in] in is input array
    /// \return tanh of input
    ///
    /// \ingroup arith_func_tanh
    AFAPI array tanh    (const array &in);

    /// C++ Interface for sinh inverse
    ///
    /// \param[in] in is input array
    /// \return sinh inverse of input
    ///
    /// \ingroup arith_func_asinh
    AFAPI array asinh   (const array &in);

    /// C++ Interface for cosh inverse
    ///
    /// \param[in] in is input array
    /// \return cosh inverse of input
    ///
    /// \ingroup arith_func_acosh
    AFAPI array acosh   (const array &in);

    /// C++ Interface for tanh inverse
    ///
    /// \param[in] in is input array
    /// \return tanh inverse of input
    ///
    /// \ingroup arith_func_atanh
    AFAPI array atanh   (const array &in);

    /// C++ Interface for nth root
    ///
    /// \param[in] lhs is nth root
    /// \param[in] rhs is value
    /// \return \p lhs th root of \p rhs
    ///
    /// \ingroup arith_func_root
    AFAPI array root    (const array &lhs, const array &rhs);

    /// C++ Interface for nth root
    ///
    /// \param[in] lhs is nth root
    /// \param[in] rhs is value
    /// \return \p lhs th root of \p rhs
    ///
    /// \ingroup arith_func_root
    AFAPI array root    (const array &lhs, const double rhs);

    /// C++ Interface for nth root
    ///
    /// \param[in] lhs is nth root
    /// \param[in] rhs is value
    /// \return \p lhs th root of \p rhs
    ///
    /// \ingroup arith_func_root
    AFAPI array root    (const double lhs, const array &rhs);


    /// \ingroup arith_func_pow
    /// @{
    /// \brief C++ Interface for power
    ///
    /// Computes the value of \p lhs raised to the power of \p rhs. The inputs
    /// can be two arrays or an array and a scalar.
    ///
    /// \param[in] lhs is base
    /// \param[in] rhs is exponent
    /// \return \p lhs raised to power \p rhs
    AFAPI array pow    (const array &lhs, const array &rhs);

    /// \copydoc pow(const array&, const array&)
    AFAPI array pow    (const array &lhs, const double rhs);

    /// \copydoc pow(const array&, const array&)
    AFAPI array pow    (const double lhs, const array &rhs);

    /// C++ Interface for power of 2
    ///
    /// \param[in] in is exponent
    /// \return 2 raised to power of \p in
    ///
    AFAPI array pow2    (const array &in);
    /// @}

#if AF_API_VERSION >= 31
    /// C++ Interface for calculating sigmoid function of an array
    ///
    /// \param[in] in is input
    /// \return the sigmoid of \p in
    ///
    /// \ingroup arith_func_sigmoid
    AFAPI array sigmoid (const array &in);
#endif

    /// C++ Interface for exponential of an array
    ///
    /// \param[in] in is exponent
    /// \return the exponential of \p in
    ///
    /// \ingroup arith_func_exp
    AFAPI array exp    (const array &in);

    /// C++ Interface for exponential of an array minus 1
    ///
    /// \param[in] in is exponent
    /// \return the exponential of \p in - 1
    ///
    /// \note This function is useful when \p in is small
    /// \ingroup arith_func_expm1
    AFAPI array expm1  (const array &in);

    /// C++ Interface for error function value
    ///
    /// \param[in] in is input
    /// \return the error function value
    ///
    /// \ingroup arith_func_erf
    AFAPI array erf    (const array &in);

    /// C++ Interface for complementary error function value
    ///
    /// \param[in] in is input
    /// \return the complementary error function value
    ///
    /// \ingroup arith_func_erfc
    AFAPI array erfc   (const array &in);

    /// C++ Interface for natural logarithm
    ///
    /// \param[in] in is input
    /// \return the natural logarithm of input
    ///
    /// \ingroup arith_func_log
    AFAPI array log    (const array &in);

    /// C++ Interface for natural logarithm of 1 + input
    ///
    /// \param[in] in is input
    /// \return the natural logarithm of (1 + input)
    ///
    /// \note This function is useful when \p is small
    /// \ingroup arith_func_log1p
    AFAPI array log1p  (const array &in);

    /// C++ Interface for logarithm base 10
    ///
    /// \param[in] in is input
    /// \return the logarithm of input in base 10
    ///
    /// \ingroup arith_func_log10
    AFAPI array log10  (const array &in);

    /// C++ Interface for logarithm base 2
    ///
    /// \param[in] in is input
    /// \return the logarithm of input in base 2
    ///
    /// \ingroup explog_func_log2
    AFAPI array log2   (const array &in);

    /// C++ Interface for square root of input
    ///
    /// \param[in] in is input
    /// \return the square root of input
    ///
    /// \ingroup arith_func_sqrt
    AFAPI array sqrt   (const array &in);

    /// C++ Interface for cube root of input
    ///
    /// \param[in] in is input
    /// \return the cube root of input
    ///
    /// \ingroup arith_func_cbrt
    AFAPI array cbrt   (const array &in);

    ///
    /// C++ Interface for factorial of input
    ///
    /// \param[in] in is input
    /// \return the factorial function of input
    ///
    /// \ingroup arith_func_factorial
    AFAPI array factorial (const array &in);

    /// C++ Interface for gamma function of input
    ///
    /// \param[in] in is input
    /// \return the gamma function of input
    ///
    /// \ingroup arith_func_tgamma
    AFAPI array tgamma (const array &in);

    /// C++ Interface for logarithm of absolute value of gamma function of input
    ///
    /// \param[in] in is input
    /// \return the logarithm of absolute value of gamma function of input
    ///
    /// \ingroup arith_func_tgamma
    AFAPI array lgamma (const array &in);

    /// C++ Interface for checking if values are zero
    ///
    /// \param[in] in is input
    /// \return array containing 1's where input is 0, and 0 otherwise.
    ///
    /// \ingroup arith_func_iszero
    AFAPI array iszero (const array &in);

    /// C++ Interface for checking if values are Infinities
    ///
    /// \param[in] in is input
    /// \return array containing 1's where input is Inf or -Inf, and 0 otherwise.
    ///
    /// \ingroup arith_func_isinf
    AFAPI array isInf  (const array &in);

    /// C++ Interface for checking if values are NaNs
    ///
    /// \param[in] in is input
    /// \return array containing 1's where input is NaN, and 0 otherwise.
    ///
    /// \ingroup arith_func_isnan
    AFAPI array isNaN  (const array &in);
}
#endif

#ifdef __cplusplus
extern "C" {
#endif

    /**
       C Interface for adding arrays

       \param[out] out will contain sum of \p lhs and \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_add
    */
    AFAPI af_err af_add   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for subtracting an array from another

       \param[out] out will contain result of \p lhs - \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_sub
    */
    AFAPI af_err af_sub   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for multiplying two arrays

       \param[out] out will contain the product of \p lhs and  \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_mul
    */
    AFAPI af_err af_mul   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for dividing an array by another

       \param[out] out will contain result of \p lhs / \p rhs.
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_div
    */
    AFAPI af_err af_div   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is less than another

       \param[out] out will contain result of \p lhs < \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup logic_func_lt
    */
    AFAPI af_err af_lt    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is greater than another

       \param[out] out will contain result of \p lhs > \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_gt
    */
    AFAPI af_err af_gt    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is less or equal to another

       \param[out] out will contain result of \p lhs <= \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_le
    */
    AFAPI af_err af_le    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is greater or equal to another

       \param[out] out will contain result of \p lhs >= \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_ge
    */
    AFAPI af_err af_ge    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is equal to another

       \param[out] out will contain result of \p lhs == \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_eq
    */
    AFAPI af_err af_eq    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is not equal to another

       \param[out] out will contain result of \p lhs != \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_neq
    */
    AFAPI af_err af_neq   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for performing logical and on two arrays

       \param[out] out will contain result of \p lhs && \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_and
    */
    AFAPI af_err af_and   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for performing logical or on two arrays

       \param[out] out will contain result of \p lhs || \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_or
    */
    AFAPI af_err af_or    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for performing logical not on input

       \param[out] out will contain result of logical not of \p in. out is of type b8
       \param[in] in is the input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_not
    */
    AFAPI af_err af_not   (af_array *out, const af_array in);

    /**
       C Interface for performing bitwise and on two arrays

       \param[out] out will contain result of \p lhs & \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_bitand
    */
    AFAPI af_err af_bitand   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for performing bitwise or on two arrays

       \param[out] out will contain result of \p lhs & \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_bitor
    */
    AFAPI af_err af_bitor    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for performing bitwise xor on two arrays

       \param[out] out will contain result of \p lhs ^ \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_bitxor
    */
    AFAPI af_err af_bitxor   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for left shift on integer arrays

       \param[out] out will contain result of the left shift
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_shiftl
    */
    AFAPI af_err af_bitshiftl(af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for right shift on integer arrays

       \param[out] out will contain result of the right shift
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_shiftr
    */
    AFAPI af_err af_bitshiftr(af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for casting an array from one type to another

       \param[out] out will contain the values in the specified type
       \param[in] in is the input
       \param[in] type is the target data type \ref af_dtype
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cast
    */
    AFAPI af_err af_cast    (af_array *out, const af_array in, const af_dtype type);

    /**
       C Interface for min of two arrays

       \param[out] out will contain minimum of \p lhs and \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_min
    */
    AFAPI af_err af_minof (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for max of two arrays

       \param[out] out will contain maximum of \p lhs and \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_max
    */
    AFAPI af_err af_maxof (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for remainder

       \param[out] out will contain the remainder of \p lhs divided by \p rhs
       \param[in] lhs is numerator
       \param[in] rhs is denominator
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_rem
    */
    AFAPI af_err af_rem   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for modulus

       \param[out] out will contain the output of \p lhs modulo \p rhs
       \param[in] lhs is dividend
       \param[in] rhs is divisor
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_mod
    */
    AFAPI af_err af_mod   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for absolute value

       \param[out] out will contain the absolute value of \p in
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_abs
    */
    AFAPI af_err af_abs     (af_array *out, const af_array in);

    /**
       C Interface for finding the phase

       \param[out] out will the phase of \p in
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_arg
    */
    AFAPI af_err af_arg     (af_array *out, const af_array in);

    /**
       C Interface for finding the sign of the input

       \param[out] out will contain the sign of each element of the input arrays
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \note output is 1 for negative numbers and 0 for positive numbers

       \ingroup arith_func_round
    */
    AFAPI af_err af_sign   (af_array *out, const af_array in);

    /**
       C Interface for rounding an array of numbers

       \param[out] out will contain values rounded to nearest integer
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \note The values are rounded to nearest integer

       \ingroup arith_func_round
    */
    AFAPI af_err af_round   (af_array *out, const af_array in);

    /**
       C Interface for truncating an array of numbers

       \param[out] out will contain values truncated to nearest integer not greater than input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_trunc
    */
    AFAPI af_err af_trunc   (af_array *out, const af_array in);

    /**
       C Interface for flooring an array of numbers

       \param[out] out will contain values rounded to nearest integer less than or equal to in
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_floor
    */
    AFAPI af_err af_floor   (af_array *out, const af_array in);

    /**
       C Interface for ceiling an array of numbers

       \param[out] out will contain values rounded to nearest integer greater than or equal to in
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_ceil
    */
    AFAPI af_err af_ceil    (af_array *out, const af_array in);

    /**
       C Interface for getting length of hypotenuse of two arrays

       \param[out] out will contain the length of the hypotenuse
       \param[in] lhs is the length of first side
       \param[in] rhs is the length of second side
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_floor
    */
    AFAPI af_err af_hypot (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for sin

       \param[out] out will contain sin of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_sin
    */
    AFAPI af_err af_sin     (af_array *out, const af_array in);

    /**
       C Interface for cos

       \param[out] out will contain cos of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cos
    */
    AFAPI af_err af_cos     (af_array *out, const af_array in);

    /**
       C Interface for tan

       \param[out] out will contain tan of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_tan
    */
    AFAPI af_err af_tan     (af_array *out, const af_array in);

    /**
       C Interface for arc sin

       \param[out] out will contain arc sin of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_asin
    */
    AFAPI af_err af_asin    (af_array *out, const af_array in);

    /**
       C Interface for arc cos

       \param[out] out will contain arc cos of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_acos
    */
    AFAPI af_err af_acos    (af_array *out, const af_array in);

    /**
       C Interface for arc tan

       \param[out] out will contain arc tan of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_atan
    */
    AFAPI af_err af_atan    (af_array *out, const af_array in);

    /**
       C Interface for arc tan of two inputs

       \param[out] out will arc tan of the inputs
       \param[in] lhs value of numerator
       \param[in] rhs value of denominator
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_atan
    */
    AFAPI af_err af_atan2 (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for creating complex array from two input arrays

       \param[out] out will contain the complex array generated from inputs
       \param[in] lhs is real array
       \param[in] rhs is imaginary array
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cplx
    */
    AFAPI af_err af_cplx2 (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for creating complex array from real array

       \param[out] out will contain complex array created from real input \p in
       \param[in] in is real array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cplx
    */
    AFAPI af_err af_cplx    (af_array *out, const af_array in);

    /**
       C Interface for getting real part from complex array

       \param[out] out will contain the real part of \p in
       \param[in] in is complex array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_real
    */
    AFAPI af_err af_real    (af_array *out, const af_array in);

    /**
       C Interface for getting imaginary part from complex array

       \param[out] out will contain the imaginary part of \p in
       \param[in] in is complex array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_imag
    */
    AFAPI af_err af_imag    (af_array *out, const af_array in);

    /**
       C Interface for getting the complex conjugate of input array

       \param[out] out will contain the complex conjugate of \p in
       \param[in] in is complex array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_conjg
    */
    AFAPI af_err af_conjg   (af_array *out, const af_array in);

    /**
       C Interface for sinh

       \param[out] out will contain sinh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_sinh
    */
    AFAPI af_err af_sinh    (af_array *out, const af_array in);

    /**
       C Interface for cosh

       \param[out] out will contain cosh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cosh
    */
    AFAPI af_err af_cosh    (af_array *out, const af_array in);

    /**
       C Interface for tanh

       \param[out] out will contain tanh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_tanh
    */
    AFAPI af_err af_tanh    (af_array *out, const af_array in);

    /**
       C Interface for asinh

       \param[out] out will contain inverse sinh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_asinh
    */
    AFAPI af_err af_asinh   (af_array *out, const af_array in);

    /**
       C Interface for acosh

       \param[out] out will contain inverse cosh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_acosh
    */
    AFAPI af_err af_acosh   (af_array *out, const af_array in);

    /**
       C Interface for atanh

       \param[out] out will contain inverse tanh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_atanh
    */
    AFAPI af_err af_atanh   (af_array *out, const af_array in);

    /**
       C Interface for root

       \param[out] out will contain \p lhs th root of \p rhs
       \param[in] lhs is nth root
       \param[in] rhs is value
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_root
    */
    AFAPI af_err af_root   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);


    /**
       C Interface for power

       \param[out] out will contain \p lhs raised to power \p rhs
       \param[in] lhs is base
       \param[in] rhs is exponent
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_pow
    */
    AFAPI af_err af_pow   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for power of two

       \param[out] out will contain the values of 2 to the power \p in
       \param[in] in is exponent
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_pow2
    */
    AFAPI af_err af_pow2     (af_array *out, const af_array in);

    /**
       C Interface for exponential of an array

       \param[out] out will contain the exponential of \p in
       \param[in] in is exponent
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_exp
    */
    AFAPI af_err af_exp     (af_array *out, const af_array in);

#if AF_API_VERSION >= 31
    /**
       C Interface for calculating sigmoid function of an array

       \param[out] out will contain the sigmoid of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_sigmoid
    */
    AFAPI af_err af_sigmoid (af_array *out, const af_array in);
#endif

    /**
       C Interface for exponential of an array minus 1

       \param[out] out will contain the exponential of \p in - 1
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_expm1
    */
    AFAPI af_err af_expm1   (af_array *out, const af_array in);

    /**
       C Interface for error function value

       \param[out] out will contain the error function value of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_erf
    */
    AFAPI af_err af_erf     (af_array *out, const af_array in);

    /**
       C Interface for complementary error function value

       \param[out] out will contain the complementary error function value of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_erfc
    */
    AFAPI af_err af_erfc    (af_array *out, const af_array in);

    /**
       C Interface for natural logarithm

       \param[out] out will contain the natural logarithm of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_log
    */
    AFAPI af_err af_log     (af_array *out, const af_array in);

    /**
       C Interface for logarithm of (in + 1)

       \param[out] out will contain the logarithm of of (in + 1)
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_log1p
    */
    AFAPI af_err af_log1p   (af_array *out, const af_array in);

    /**
       C Interface for logarithm base 10

       \param[out] out will contain the base 10 logarithm of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_log10
    */
    AFAPI af_err af_log10   (af_array *out, const af_array in);

    /**
       C Interface for logarithm base 2

       \param[out] out will contain the base 2 logarithm of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup explog_func_log2
    */
    AFAPI af_err af_log2   (af_array *out, const af_array in);

    /**
       C Interface for square root

       \param[out] out will contain the square root of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_sqrt
    */
    AFAPI af_err af_sqrt    (af_array *out, const af_array in);

    /**
       C Interface for cube root

       \param[out] out will contain the cube root of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cbrt
    */
    AFAPI af_err af_cbrt    (af_array *out, const af_array in);

    /**
       C Interface for the factorial

       \param[out] out will contain the result of factorial of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_factorial
    */
    AFAPI af_err af_factorial   (af_array *out, const af_array in);

    /**
       C Interface for the gamma function

       \param[out] out will contain the result of gamma function of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_tgamma
    */
    AFAPI af_err af_tgamma   (af_array *out, const af_array in);

    /**
       C Interface for the logarithm of absolute values of gamma function

       \param[out] out will contain the result of logarithm of absolute values of gamma function of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_lgamma
    */
    AFAPI af_err af_lgamma   (af_array *out, const af_array in);

    /**
        C Interface for checking if values are zero

        \param[out] out will contain 1's where input is 0, and 0 otherwise.
        \param[in] in is input
        \return \ref AF_SUCCESS if the execution completes properly

        \ingroup arith_func_iszero
    */
    AFAPI af_err af_iszero  (af_array *out, const af_array in);

    /**
        C Interface for checking if values are infinities

        \param[out] out will contain 1's where input is Inf or -Inf, and 0 otherwise.
        \param[in] in is input
        \return \ref AF_SUCCESS if the execution completes properly

        \ingroup arith_func_isinf
    */
    AFAPI af_err af_isinf   (af_array *out, const af_array in);

    /**
        C Interface for checking if values are NaNs

        \param[out] out will contain 1's where input is NaN, and 0 otherwise.
        \param[in] in is input
        \return \ref AF_SUCCESS if the execution completes properly

        \ingroup arith_func_isnan
    */
    AFAPI af_err af_isnan   (af_array *out, const af_array in);

#ifdef __cplusplus
}
#endif