File: array.h

package info (click to toggle)
arrayfire 3.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 109,016 kB
  • sloc: cpp: 127,909; lisp: 6,878; python: 3,923; ansic: 1,051; sh: 347; makefile: 338; xml: 175
file content (1537 lines) | stat: -rw-r--r-- 55,753 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#pragma once
#include <af/defines.h>
#include <af/seq.h>
#include <af/util.h>
#include <af/index.h>

#ifdef __cplusplus
#include <af/traits.hpp>
#include <vector>
namespace af
{

    class dim4;

    ///
    /// \brief A multi dimensional data container
    ///
    class AFAPI array {
        af_array   arr;


    public:
        ///
        /// \brief Updates the internal \ref af_array object
        ///
        /// \note This function will reduce the reference of the previous
        ///       \ref af_array object
        ///
        void set(af_array tmp);

        ///
        /// \brief Intermediate data class. Used for assignment and indexing.
        ///
        /// \note This class is for internal book keeping while indexing. This class is not intended for use in user code.
        ///
        class AFAPI array_proxy
        {
            struct array_proxy_impl;    //forward declaration
            array_proxy_impl *impl;     // implementation

        public:
            array_proxy(array& par, af_index_t *ssss, bool linear = false);
            array_proxy(const array_proxy &other);
#if __cplusplus > 199711L
            array_proxy(array_proxy &&other);
            array_proxy & operator=(array_proxy &&other);
#endif
            ~array_proxy();

            // Implicit conversion operators
            operator array() const;
            operator array();

#define ASSIGN(OP)                                                  \
            array_proxy& operator OP(const array_proxy &a);         \
            array_proxy& operator OP(const array &a);               \
            array_proxy& operator OP(const double &a);              \
            array_proxy& operator OP(const cdouble &a);             \
            array_proxy& operator OP(const cfloat &a);              \
            array_proxy& operator OP(const float &a);               \
            array_proxy& operator OP(const int &a);                 \
            array_proxy& operator OP(const unsigned &a);            \
            array_proxy& operator OP(const bool &a);                \
            array_proxy& operator OP(const char &a);                \
            array_proxy& operator OP(const unsigned char &a);       \
            array_proxy& operator OP(const long  &a);               \
            array_proxy& operator OP(const unsigned long &a);       \
            array_proxy& operator OP(const long long  &a);          \
            array_proxy& operator OP(const unsigned long long &a);  \

            ASSIGN(=)
            ASSIGN(+=)
            ASSIGN(-=)
            ASSIGN(*=)
            ASSIGN(/=)
#undef ASSIGN

#if AF_API_VERSION >= 32
#define ASSIGN(OP)                                                  \
            array_proxy& operator OP(const short &a);               \
            array_proxy& operator OP(const unsigned short &a);      \

            ASSIGN(=)
            ASSIGN(+=)
            ASSIGN(-=)
            ASSIGN(*=)
            ASSIGN(/=)
#undef ASSIGN
#endif

            // af::array member functions. same behavior as those below
            af_array get();
            af_array get() const;
            dim_t elements() const;
            template<typename T> T* host() const;
            void host(void *ptr) const;
            dtype type() const;
            dim4 dims() const;
            dim_t dims(unsigned dim) const;
            unsigned numdims() const;
            size_t bytes() const;
            array copy() const;
            bool isempty() const;
            bool isscalar() const;
            bool isvector() const;
            bool isrow() const;
            bool iscolumn() const;
            bool iscomplex() const;
            inline bool isreal() const { return !iscomplex(); }
            bool isdouble() const;
            bool issingle() const;
            bool isrealfloating() const;
            bool isfloating() const;
            bool isinteger() const;
            bool isbool() const;
            void eval() const;
            array as(dtype type) const;
            array T() const;
            array H() const;
            template<typename T> T scalar() const;
            template<typename T> T* device() const;
            void unlock() const;
#if AF_API_VERSION >= 31
            void lock() const;
#endif

                  array::array_proxy row(int index);
            const array::array_proxy row(int index) const;

                  array::array_proxy rows(int first, int last);
            const array::array_proxy rows(int first, int last) const;

                  array::array_proxy col(int index);
            const array::array_proxy col(int index) const;
                  array::array_proxy cols(int first, int last);
            const array::array_proxy cols(int first, int last) const;

                  array::array_proxy slice(int index);
            const array::array_proxy slice(int index) const;

                  array::array_proxy slices(int first, int last);
            const array::array_proxy slices(int first, int last) const;
        };

        //array(af_array in, const array *par, af_index_t seqs[4]);
        /**
            \ingroup construct_mat
            @{
        */
        /**
            Create undimensioned array (no data, undefined size)

            \code
            array A, B, C;   // creates three arrays called A, B and C
            \endcode
        */
        array();

        /**
            Creates an array from an \ref af_array handle
            \param handle the af_array object.
         */
        explicit
        array(const af_array handle);

        /**
            Creates a copy to the \p in array.

            \param in The input \ref array
         */
        array(const array& in);

        /**
            Allocate a one-dimensional array of a specified size with undefined
            contents

            Declare a two-dimensional array by passing the
            number of rows and the number of columns as the first two parameters.
            The (optional) second parameter is the type of the array. The default
            type is f32 or 4-byte single-precision floating-point numbers.

            \code
            // allocate space for an array with 10 rows
            array A(10);          // type is the default f32

            // allocate space for a column vector with 100 rows
            array A(100, f64);    // f64 = double precision
            \endcode

            \param[in] dim0 number of columns in the array
            \param[in] ty   optional label describing the data type
                       (default is f32)

        */
        array(dim_t dim0, dtype ty = f32);

        /**
            Allocate a two-dimensional array of a specified size with undefined
            contents

            Declare a two-dimensional array by passing the
            number of rows and the number of columns as the first two parameters.
            The (optional) third parameter is the type of the array. The default
            type is f32 or 4-byte single-precision floating-point numbers.

            \code
            // allocate space for an array with 10 rows and 8 columns
            array A(10, 8);          // type is the default f32

            // allocate space for a column vector with 100 rows (and 1 column)
            array A(100, 1, f64);    // f64 = double precision
            \endcode

            \param[in] dim0 number of columns in the array
            \param[in] dim1 number of rows in the array
            \param[in] ty optional label describing the data type
                       (default is f32)

        */
        array(dim_t dim0, dim_t dim1, dtype ty = f32);

        /**
            Allocate a three-dimensional (3D) array of a specified size with
            undefined contents

            This is useful to quickly declare a three-dimensional array by
            passing the size as the first three parameters. The (optional)
            fourth parameter is the type of the array. The default type is f32
            or 4-byte single-precision floating point numbers.

            \code
            // allocate space for a 10 x 10 x 10 array
            array A(10, 10, 10);          // type is the default f32

            // allocate space for a 3D, double precision array
            array A(10, 10, 10, f64);     // f64 = double precision
            \endcode

            \param[in] dim0 first dimension of the array
            \param[in] dim1 second dimension of the array
            \param[in] dim2 third dimension of the array
            \param[in] ty optional label describing the data type
                       (default is f32)

        */
        array(dim_t dim0, dim_t dim1, dim_t dim2, dtype ty = f32);

        /**
            Allocate a four-dimensional (4D) array of a specified size with
            undefined contents

            This is useful to quickly declare a four-dimensional array by
            passing the size as the first four parameters. The (optional) fifth
            parameter is the type of the array. The default type is f32 or
            4-byte floating point numbers.

            \code
            // allocate space for a 10 x 10 x 10 x 20 array
            array A(10, 10, 10, 20);          // type is the default f32

            // allocate space for a 4D, double precision array
            array A(10, 10, 10, 20, f64);     // f64 = double precision
            \endcode

            \param[in] dim0 first dimension of the array
            \param[in] dim1 second dimension of the array
            \param[in] dim2 third dimension of the array
            \param[in] dim3 fourth dimension of the array
            \param[in] ty optional label describing the data type
                       (default is f32)

        */
        array(dim_t dim0, dim_t dim1, dim_t dim2, dim_t dim3, dtype ty = f32);

        /**
            Allocate an array of a specified size with undefined contents

            This can be useful when the dimensions of the array are calculated
            somewhere else within the code. The first parameter specifies the
            size of the array via dim4(). The second parameter is the type of
            the array. The default type is f32 or 4-byte
            single-precision floating point numbers.

            \code

            // create a two-dimensional 10 x 10 array
            dim4 dims(10, 10);       // converted to (10, 10, 1, 1)
            array a1(dims);          // create the array (type is f32, the default)

            // create a three-dimensional 10 x 10 x 20 array
            dim4 dims(10, 10, 20);   // converted to (10, 10, 20, 1)
            array a2(dims,f64);      // f64 = double precision

            \endcode

            \param[in] dims size of the array
            \param[in] ty optional label describing the data type
                       (default is f32)
        */
        explicit
        array(const dim4& dims, dtype ty = f32);

        /**
            Create a column vector on the device using a host/device pointer

            \param[in] dim0     number of elements in the column vector
            \param[in] pointer  pointer (points to a buffer on the host/device)
            \param[in] src      source of the data (default is afHost, can also
                                be afDevice)

            \code
            // allocate data on the host
            int h_buffer[] = {23, 34, 18, 99, 34};

            array A(4, h_buffer);   // copy host data to device
                                    //
                                    // A = 23
                                    //   = 34
                                    //   = 18
                                    //   = 99

            \endcode

            \note If \p src is \ref afHost, the first \p dim0 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer.

        */
        template<typename T>
        array(dim_t dim0,
              const T *pointer, af::source src=afHost);


        /**
            Create a 2D array on the device using a host/device pointer

            \param[in] dim0     number of rows
            \param[in] dim1     number of columns
            \param[in] pointer  pointer (points to a buffer on the host/device)
            \param[in] src      source of the data (default is afHost, can also
                                be \ref afDevice)

            \code
            int h_buffer[] = {0, 1, 2, 3, 4, 5};  // host array
            array A(2, 3, h_buffer);              // copy host data to device
            \endcode

            \image html 2dArray.png

            \note If \p src is \ref afHost, the first \p dim0 * \p dim1 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.
        */
        template<typename T>
        array(dim_t dim0, dim_t dim1,
              const T *pointer, af::source src=afHost);


        /**
            Create a 3D array on the device using a host/device pointer

            \param[in] dim0     first dimension
            \param[in] dim1     second dimension
            \param[in] dim2     third dimension
            \param[in] pointer  pointer (points to a buffer on the host/device)
            \param[in] src      source of the data (default is \ref afHost, can
                                also be \ref afDevice)

            \code
            int h_buffer[] = {0, 1, 2, 3, 4, 5, 6, 7, 8
                              9, 0, 1, 2, 3, 4, 5, 6, 7};   // host array

            array A(3, 3, 2,  h_buffer);   // copy host data to 3D device array
            \endcode

            \note If \p src is \ref afHost, the first \p dim0 * \p dim1 * \p dim2 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.

            \image html 3dArray.png
        */
        template<typename T>
        array(dim_t dim0, dim_t dim1, dim_t dim2,
              const T *pointer, af::source src=afHost);


        /**
            Create a 4D array on the device using a host/device pointer

            \param[in] dim0     first dimension
            \param[in] dim1     second dimension
            \param[in] dim2     third dimension
            \param[in] dim3     fourth dimension
            \param[in] pointer  pointer (points to a buffer on the host/device)
            \param[in] src      source of the data (default is afHost, can also
                                be \ref afDevice)

            \code
            int h_buffer[] = {0, 1, 2, 3,
                              4, 5, 6, 7,
                              8, 9, 0, 1,
                              2, 3, 4, 5};   // host array with 16 elements

            array A(2, 2, 2, 2, h_buffer);   // copy host data to 4D device array
            \endcode

            \note If \p src is \ref afHost, the first \p dim0 * \p dim1 * \p dim2 * \p dim3 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.
        */
        template<typename T>
        array(dim_t dim0, dim_t dim1, dim_t dim2, dim_t dim3,
              const T *pointer, af::source src=afHost);

        /**
            Create an array of specified size on the device using a host/device
            pointer

            This function copies data from the location specified by the
            pointer to a 1D/2D/3D/4D array on the device. The data is arranged
            in "column-major" format (similar to that used by FORTRAN).

            \param[in] dims    vector data type containing the dimension of the
                               \ref array
            \param[in] pointer pointer (points to a buffer on the host/device)
            \param[in] src     source of the data (default is afHost, can also
                                be \ref afDevice)

            \code
            int h_buffer[] = {0, 1, 2, 3,    // host array with 16 elements
                              4, 5, 6, 7,    // written in "row-major" format
                              8, 9, 0, 1,
                              2, 3, 4, 5};

            dim4 dims(4, 4);

            array A(dims, h_buffer);         // A  =  0  4  8  2
                                             //       1  5  9  3
                                             //       2  6  0  4
                                             //       3  7  1  5

                                             // Note the "column-major" ordering
                                             // used in ArrayFire
            \endcode

            \note If \p src is \ref afHost, the first dims.elements() elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.
        */
        template<typename T>
        explicit
        array(const dim4& dims,
              const T *pointer, af::source src=afHost);

        /**
           Adjust the dimensions of an N-D array (fast).

           This operation simply rearranges the description of the array.
           No memory transfers or transformations are  performed. The total
           number of elements must not change.

           \code
           float f[] = {1,2,3,4};
           array a(2,2,f);
           //a=[1 3]
           //  [2 4]

           array b = array(a, dim4(4));
           //b=[1]
           //  [2]
           //  [3]
           //  [4]

           array c = array(a, b.T().dims() );
           //c=[1 2 3 4]
           \endcode

           \param[in] input
           \param[in] dims total number of elements must not change.
           \return same underlying array data with different dimensions
        */
        array(const array& input, const dim4& dims);

        /**
           Adjust the dimensions of an N-D array (fast).

           This operation simply rearranges the description of the array.
           No memory transfers or transformations are  performed. The total
           number of elements must not change.

           \code

           float f[] = {1,2,3,4};
           array a(2,2,f);
           //a=[1 3]
           //  [2 4]

           array b = array(a, 4);
           //b=[1]
           //  [2]
           //  [3]
           //  [4]

           array c = array(a, 1, 4);
           //c=[1 2 3 4]
           \endcode

           \param[in] input
           \param[in] dim0 first dimension
           \param[in] dim1 second dimension
           \param[in] dim2 third dimension
           \param[in] dim3 fourth dimension
           \return same underlying array data with different dimensions
        */
        array(  const array& input,
                const dim_t dim0, const dim_t dim1 = 1,
                const dim_t dim2 = 1, const dim_t dim3 = 1);

        /**
            @}
        */

        /**
           \ingroup method_mat
           @{
        */

        /**
           get the \ref af_array handle
        */
        af_array get();

        /**
           get the \ref af_array handle
        */
        af_array get() const;

        /**
           get the number of elements in array
        */
        dim_t elements() const;

        /**
           Copy array data to host and return host pointer
        */
        template<typename T> T* host() const;

        /**
           Copy array data to existing host pointer
        */
        void host(void *ptr) const;

        /**
           Perform deep copy from host/device pointer to an existing array
        */
        template<typename T> void write(const T *ptr, const size_t bytes, af::source src = afHost);

        /**
           Get array data type
        */
        dtype type() const;

        /**
           Get dimensions of the array
        */
        dim4 dims() const;

        /**
           Get dimensions of the array
        */
        dim_t dims(unsigned dim) const;

        /**
           Get the number of dimensions of the array
        */
        unsigned numdims() const;

        /**
           Get the size of the array in bytes
        */
        size_t bytes() const;

        /**
           Perform deep copy of the array
        */
        array copy() const;

        /**
           \brief Returns true of the array is empty
         */
        bool isempty() const;

        /**
           \brief Returns true of the array contains only one value
         */
        bool isscalar() const;

        /**
           \brief Returns true if only one of the array dimensions has more than one element
        */
        bool isvector() const;

        /**
           \brief Returns true if only the second dimension has more than one element
        */
        bool isrow() const;

        /**
           \brief Returns true if only the first dimension has more than one element
        */
        bool iscolumn() const;

        /**
           \brief Returns true if the array type is \ref c32 or \ref c64
        */
        bool iscomplex() const;

        /**
           \brief Returns true if the array type is neither \ref c32 nor \ref c64
        */
        inline bool isreal() const { return !iscomplex(); }

        /**
           \brief Returns true if the array type is \ref f64 or \ref c64
        */
        bool isdouble() const;

        /**
           \brief Returns true if the array type is neither \ref f64 nor \ref c64
        */
        bool issingle() const;

        /**
           \brief Returns true if the array type is \ref f32 or \ref f64
        */
        bool isrealfloating() const;

        /**
           \brief Returns true if the array type is \ref f32, \ref f64, \ref c32 or \ref c64
        */
        bool isfloating() const;

        /**
           \brief Returns true if the array type is \ref u8, \ref b8, \ref s32 \ref u32, \ref s64, \ref u64, \ref s16, \ref u16
        */
        bool isinteger() const;

        /**
           \brief Returns true if the array type is \ref b8
        */
        bool isbool() const;

        /**
           \brief Evaluate any JIT expressions to generate data for the array
        */
        void eval() const;

        /**
           \brief Get the first element of the array as a scalar

           \note This is recommended for use while debugging. Calling this method constantly reduces performance.
        */
        template<typename T> T scalar() const;

        /**
           @}
        */


        /**
           \defgroup device_func_device array::device<T>

           Get the device pointer from the array and lock the buffer in memory manager.
           @{

           The device memory returned by this function is not freed until unlock() is called.

           \ingroup arrayfire_func
           \ingroup device_mat
        */
        template<typename T> T* device() const;
        /**
           @}
        */

        // INDEXING
        // Single arguments

        /**
            \brief This operator returns a reference of the original array at a given coordinate.

            You can pass \ref af::seq, \ref af::array, or an int as it's parameters.
            These references can be used for assignment or returning references
            to \ref af::array objects.

            If the \ref af::array is a multi-dimensional array then this coordinate
            will treated as the data as a linear array.

            \param[in] s0   is sequence of linear indices

            \returns A reference to the array at the given index

            \ingroup array_mem_operator_paren

        */
        array::array_proxy operator()(const index &s0);

        /**
            \copydoc operator()(const index &)

            \ingroup array_mem_operator_paren
        */
        const array::array_proxy operator()(const index &s0) const;


        /**
            \brief This operator returns a reference of the original array at a
            given coordinate.

            You can pass \ref af::seq, \ref af::array, or an int as it's parameters.
            These references can be used for assignment or returning references
            to \ref af::array objects.

            \param[in] s0   is sequence of indices along the first dimension
            \param[in] s1   is sequence of indices along the second dimension
            \param[in] s2   is sequence of indices along the third dimension
            \param[in] s3   is sequence of indices along the fourth dimension

            \returns A reference to the array at the given index

            \ingroup array_mem_operator_paren
        */
        array::array_proxy operator()(const index &s0,
                                      const index &s1,
                                      const index &s2 = span,
                                      const index &s3 = span);

        /**
            \copydoc operator()(const index &, const index &, const index &, const index &)

            \ingroup array_mem_operator_paren
        */
        const array::array_proxy operator()(const index &s0,
                                            const index &s1,
                                            const index &s2 = span,
                                            const index &s3 = span) const;


        /// \ingroup array_mem_row
        /// @{
        ///
        /// \brief Returns a reference to a row
        ///
        /// \copydetails array_mem_row
        ///
        /// \param[in]  index is the index of the row to be returned
        ///
        /// \returns a reference to a row defined by \p index
        ///
              array::array_proxy row(int index);
        const array::array_proxy row(int index) const; ///< \copydoc row

        ///
        /// \brief Returns a reference to sequence of rows
        ///
        /// \copydetails array_mem_row
        ///
        /// \param[in]  first is the index of the row to be returned
        /// \param[in]  last is the index of the row to be returned
        ///
        /// \returns a reference to a set of rows
              array::array_proxy rows(int first, int last);
        const array::array_proxy rows(int first, int last) const; ///< \copydoc rows
        /// @}

        /// \ingroup array_mem_col
        /// @{
        ///
        /// \brief Returns a reference to a col
        ///
        /// \copydetails array_mem_col
        ///
        /// \param[in]  index is the index of the col to be returned
        ///
        /// \returns a reference to a col defined by \p index
        ///
              array::array_proxy col(int index);
        const array::array_proxy col(int index) const; ///< \copydoc col

        ///
        /// \brief Returns a reference to sequence of columns
        ///
        /// \copydetails array_mem_col
        ///
        /// \param[in]  first is the index of the columns to be returned
        /// \param[in]  last is the index of the columns to be returned
        ///
        /// \returns a reference to a set of columns
              array::array_proxy cols(int first, int last);
        const array::array_proxy cols(int first, int last) const; ///< \copydoc cols
        /// @}

        /// \ingroup array_mem_slice
        /// @{
        ///
        /// \brief Returns a reference to a matrix in a volume
        ///
        /// \copydetails array_mem_slice
        ///
        /// \param[in]  index is the index of the slice to be returned
        ///
        /// \returns a reference to a col
        ///
              array::array_proxy slice(int index);
        const array::array_proxy slice(int index) const; ///< \copydoc slice

        /// \brief Returns a reference to a matrix in a volume
        ///
        /// \copydetails array_mem_slice
        ///
        /// \param[in]  first is the index of the slices to be returned
        /// \param[in]  last is the index of the slices to be returned
        ///
        /// \returns a reference to a set of slice
              array::array_proxy slices(int first, int last);
        const array::array_proxy slices(int first, int last) const; ///< \copydoc slices
        /// @}

        /// \brief Converts the array into another type
        ///
        ///  \param[in] type is the desired type(f32, s64, etc.)
        /// \returns an array with the type specified by \p type
        /// \ingroup method_mat
        const array as(dtype type) const;


        ~array();

        /// \brief Get the transposed the array
        ///
        /// \returns Transposed matrix
        /// \ingroup method_mat
        array T() const;
        /// \brief Get the conjugate-transpose of the current array
        ///
        /// \returns conjugate-transpose matrix
        /// \ingroup method_mat
        array H() const;

#define ASSIGN_(OP)                                                                     \
        array& OP(const array &val);                                                    \
        array& OP(const double &val);              /**< \copydoc OP (const array &) */  \
        array& OP(const cdouble &val);             /**< \copydoc OP (const array &) */  \
        array& OP(const cfloat &val);              /**< \copydoc OP (const array &) */  \
        array& OP(const float &val);               /**< \copydoc OP (const array &) */  \
        array& OP(const int &val);                 /**< \copydoc OP (const array &) */  \
        array& OP(const unsigned &val);            /**< \copydoc OP (const array &) */  \
        array& OP(const bool &val);                /**< \copydoc OP (const array &) */  \
        array& OP(const char &val);                /**< \copydoc OP (const array &) */  \
        array& OP(const unsigned char &val);       /**< \copydoc OP (const array &) */  \
        array& OP(const long  &val);               /**< \copydoc OP (const array &) */  \
        array& OP(const unsigned long &val);       /**< \copydoc OP (const array &) */  \
        array& OP(const long long  &val);          /**< \copydoc OP (const array &) */  \
        array& OP(const unsigned long long &val);  /**< \copydoc OP (const array &) */  \

#if AF_API_VERSION >= 32
#define ASSIGN(OP)                                                                      \
        ASSIGN_(OP)                                                                     \
        array& OP(const short  &val);              /**< \copydoc OP (const array &) */  \
        array& OP(const unsigned short &val);      /**< \copydoc OP (const array &) */  \

#else
#define ASSIGN(OP) ASSIGN_(OP)
#endif


        /// \ingroup array_mem_operator_eq
        /// @{
        /// \brief Assignes the value(s) of val to the elements of the array.
        ///
        /// \param[in] val  is the value to be assigned to the /ref af::array
        /// \returns the reference to this
        ///
        /// \note   This is a copy on write operation. The copy only occurs when the
        ///          operator() is used on the left hand side.
        ASSIGN(operator=)
        /// @}

        /// \ingroup array_mem_operator_plus_eq
        /// @{
        /// \brief Adds the value(s) of val to the elements of the array.
        ///
        /// \param[in] val  is the value to be assigned to the /ref af::array
        /// \returns the reference to this
        ///
        /// \note   This is a copy on write operation. The copy only occurs when the
        ///          operator() is used on the left hand side.
        ASSIGN(operator+=)
        /// @}

        /// \ingroup array_mem_operator_minus_eq
        /// @{
        /// \brief Subtracts the value(s) of val to the elements of the array.
        ///
        /// \param[in] val  is the value to be assigned to the /ref af::array
        /// \returns the reference to this
        ///
        /// \note   This is a copy on write operation. The copy only occurs when the
        ///          operator() is used on the left hand side.
        ASSIGN(operator-=)
        /// @}

        /// \ingroup array_mem_operator_multiply_eq
        /// @{
        /// \brief Multiplies the value(s) of val to the elements of the array.
        ///
        /// \param[in] val  is the value to be assigned to the /ref af::array
        /// \returns the reference to this
        ///
        /// \note   This is a copy on write operation. The copy only occurs when the
        ///          operator() is used on the left hand side.
        ASSIGN(operator*=)
        /// @}

        /// \ingroup array_mem_operator_divide_eq
        /// @{
        /// \brief Divides the value(s) of val to the elements of the array.
        ///
        /// \param[in] val  is the value to be assigned to the /ref af::array
        /// \returns the reference to this
        ///
        /// \note   This is a copy on write operation. The copy only occurs when the
        ///          operator() is used on the left hand side.
        /// \ingroup array_mem_operator_divide_eq
        ASSIGN(operator/=)
        /// @}


#undef ASSIGN
#undef ASSIGN_

        ///
        /// \brief Negates the values of the array
        /// \ingroup arith_func_neg
        ///
        /// \returns an \ref array with negated values
        array operator -() const;

        ///
        /// \brief Performs a not operation on the values of the array
        /// \ingroup arith_func_not
        ///
        /// \returns an \ref array with negated values
        array operator !() const;

        ///
        /// \brief Get the count of non-zero elements in the array
        ///
        /// For dense matrix, this is the same as count<int>(arr);
        int nonzeros() const;


        ///
        /// \brief Locks the device buffer in the memory manager.
        ///
        /// This method can be called to take control of the device pointer from the memory manager.
        /// While a buffer is locked, the memory manager doesn't free the memory until unlock() is invoked.
        void lock() const;

        ///
        /// \brief Unlocks the device buffer in the memory manager.
        ///
        /// This method can be called after called after calling \ref array::lock()
        /// Calling this method gives back the control of the device pointer to the memory manager.
        void unlock() const;
    };
    // end of class array

#define BIN_OP_(OP)                                                                                                      \
    AFAPI array OP (const array& lhs, const array& rhs);                                                                 \
    AFAPI array OP (const bool& lhs, const array& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const int& lhs, const array& rhs);                  /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const unsigned& lhs, const array& rhs);             /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const char& lhs, const array& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const unsigned char& lhs, const array& rhs);        /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const long& lhs, const array& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const unsigned long& lhs, const array& rhs);        /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const long long& lhs, const array& rhs);            /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const unsigned long long& lhs, const array& rhs);   /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const double& lhs, const array& rhs);               /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const float& lhs, const array& rhs);                /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const cfloat& lhs, const array& rhs);               /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const cdouble& lhs, const array& rhs);              /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const bool& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const int& rhs);                  /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const unsigned& rhs);             /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const char& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const unsigned char& rhs);        /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const long& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const unsigned long& rhs);        /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const long long& rhs);            /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const unsigned long long& rhs);   /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const double& rhs);               /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const float& rhs);                /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const cfloat& rhs);               /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const cdouble& rhs);              /**< \copydoc OP (const array&, const array&) */ \

#if AF_API_VERSION >= 32
#define BIN_OP(OP)                                                                                                       \
        BIN_OP_(OP)                                                                                                      \
        AFAPI array OP (const short& lhs, const array& rhs);            /**< \copydoc OP (const array&, const array&) */ \
        AFAPI array OP (const unsigned short& lhs, const array& rhs);   /**< \copydoc OP (const array&, const array&) */ \
        AFAPI array OP (const array& lhs, const short& rhs);            /**< \copydoc OP (const array&, const array&) */ \
        AFAPI array OP (const array& lhs, const unsigned short& rhs);   /**< \copydoc OP (const array&, const array&) */ \

#else
#define BIN_OP(OP) BIN_OP_(OP)
#endif

    /// \ingroup arith_func_add
    /// @{
    /// \brief Adds two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns an array which is the sum of the \p lhs and \p rhs
    BIN_OP(operator+ )
    /// @}

    /// \ingroup arith_func_sub
    /// @{
    /// \brief Subtracts two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns an array which is the subtraction of the \p lhs and \p rhs
    BIN_OP(operator- )
    /// @}

    /// \ingroup arith_func_mul
    /// @{
    /// \brief Multiplies two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns an array which is the product of the \p lhs and \p rhs
    BIN_OP(operator* )
    /// @}

    /// \ingroup arith_func_div
    /// @{
    /// \brief Divides two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns an array which is the quotient of the \p lhs and \p rhs
    BIN_OP(operator/ )
    /// @}

    /// \ingroup arith_func_eq
    /// @{
    /// \brief Performs an equality operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns an array of type b8 with the equality operation performed on each element
    BIN_OP(operator==)
    /// @}

    /// \ingroup arith_func_neq
    /// @{
    /// \brief Performs an inequality operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with the != operation performed on each element
    ///             of \p lhs and \p rhs
    BIN_OP(operator!=)
    /// @}

    /// \ingroup arith_func_lt
    /// @{
    /// \brief Performs a lower than operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with the < operation performed on each element
    ///             of \p lhs and \p rhs
    BIN_OP(operator< )
    /// @}

    /// \ingroup arith_func_le
    /// @{
    /// \brief Performs an lower or equal operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with the <= operation performed on each element
    ///             of \p lhs and \p rhs
    BIN_OP(operator<=)
    /// @}

    /// \ingroup arith_func_gt
    /// @{
    /// \brief Performs an greater than operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with the > operation performed on each element
    ///             of \p lhs and \p rhs
    BIN_OP(operator> )
    /// @}

    /// \ingroup arith_func_ge
    /// @{
    /// \brief Performs an greater or equal operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with the >= operation performed on each element
    ///             of \p lhs and \p rhs
    BIN_OP(operator>=)
    /// @}

    /// \ingroup arith_func_and
    /// @{
    /// \brief  Performs a logical AND operation on two arrays or an array and a
    ///         value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with a logical AND operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator&&)
    /// @}

    /// \ingroup arith_func_or
    /// @{
    /// \brief  Performs an logical OR operation on two arrays or an array and a
    ///         value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with a logical OR operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator||)
    /// @}

    /// \ingroup arith_func_mod
    /// @{
    /// \brief Performs an modulo operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a modulo operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator% )
    /// @}

    /// \ingroup arith_func_bitand
    /// @{
    /// \brief  Performs an bitwise AND operation on two arrays or an array and
    ///         a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a bitwise AND operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator& )
    /// @}

    /// \ingroup arith_func_bitor
    /// @{
    /// \brief  Performs an bitwise OR operation on two arrays or an array and
    ///         a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a bitwise OR operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator| )
    /// @}

    /// \ingroup arith_func_bitxor
    /// @{
    /// \brief  Performs an bitwise XOR operation on two arrays or an array and
    ///         a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a bitwise OR operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator^ )
    /// @}

    /// \ingroup arith_func_shiftl
    /// @{
    /// \brief  Performs an left shift operation on two arrays or an array and a
    ///          value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a left shift operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator<<)
    /// @}

    /// \ingroup arith_func_shiftr
    /// @{
    /// \brief  Performs an right shift operation on two arrays or an array and a
    ///          value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a right shift operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator>>)
    /// @}

#undef BIN_OP
#undef BIN_OP_

    /// Evaluate an expression (nonblocking).
    /**
       \ingroup method_mat
       @{
    */
    inline array &eval(array &a) { a.eval(); return a; }
    inline void eval(array &a, array &b) { eval(a); b.eval(); }
    inline void eval(array &a, array &b, array &c) { eval(a, b); c.eval(); }
    inline void eval(array &a, array &b, array &c, array &d) { eval(a, b, c); d.eval(); }
    inline void eval(array &a, array &b, array &c, array &d, array &e) { eval(a, b, c, d); e.eval(); }
    inline void eval(array &a, array &b, array &c, array &d, array &e, array &f) { eval(a, b, c, d, e); f.eval(); }
    /**
       @}
    */

}
#endif

#ifdef __cplusplus
extern "C" {
#endif

    /**
       \ingroup construct_mat
       @{
    */

    /**
       Create an \ref af_array handle initialized with user defined data

       This function will create an \ref af_array handle from the memory provided in \p data

       \param[out]  arr The pointer to the returned object.
       \param[in]   data The data which will be loaded into the array
       \param[in]   ndims The number of dimensions read from the \p dims parameter
       \param[in]   dims A C pointer with \p ndims elements. Each value represents the size of that dimension
       \param[in]   type The type of the \ref af_array object

       \returns \ref AF_SUCCESS if the operation was a success
    */
    AFAPI af_err af_create_array(af_array *arr, const void * const data, const unsigned ndims, const dim_t * const dims, const af_dtype type);

    /**
       Create af_array handle

       \param[out]  arr The pointer to the retured object.
       \param[in]   ndims The number of dimensions read from the \p dims parameter
       \param[in]   dims A C pointer with \p ndims elements. Each value represents the size of that dimension
       \param[in]   type The type of the \ref af_array object

       \returns \ref AF_SUCCESS if the operation was a success
    */
    AFAPI af_err af_create_handle(af_array *arr, const unsigned ndims, const dim_t * const dims, const af_dtype type);

    /**
    @}
    */

    /**
       \ingroup method_mat
       @{

       Deep copy an array to another
    */
    AFAPI af_err af_copy_array(af_array *arr, const af_array in);

    /**
       Copy data from a C pointer (host/device) to an existing array.
    */
    AFAPI af_err af_write_array(af_array arr, const void *data, const size_t bytes, af_source src);

    /**
       Copy data from an af_array to a C pointer.

       Needs to used in conjunction with the two functions above
    */
    AFAPI af_err af_get_data_ptr(void *data, const af_array arr);

    /**
       \brief Reduce the reference count of the \ref af_array
    */
    AFAPI af_err af_release_array(af_array arr);

    /**
       Increments an \ref af_array reference count
    */
    AFAPI af_err af_retain_array(af_array *out, const af_array in);

#if AF_API_VERSION >= 31
    /**
       \ingroup method_mat
       @{

       Get the use count of `af_array`
    */
    AFAPI af_err af_get_data_ref_count(int *use_count, const af_array in);
#endif


    /**
       Evaluate any expressions in the Array
    */
    AFAPI af_err af_eval(af_array in);

    /**
      @}
    */

    /**
        \ingroup method_mat
        @{
    */
    /**
        \brief Gets the number of elements in an array.

        \param[out] elems is the output that contains number of elements of \p arr
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_get_elements(dim_t *elems, const af_array arr);

    /**
        \brief Gets the type of an array.

        \param[out] type is the output that contains the type of \p arr
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_get_type(af_dtype *type, const af_array arr);

    /**
        \brief Gets the dimseions of an array.

        \param[out] d0 is the output that contains the size of first dimension of \p arr
        \param[out] d1 is the output that contains the size of second dimension of \p arr
        \param[out] d2 is the output that contains the size of third dimension of \p arr
        \param[out] d3 is the output that contains the size of fourth dimension of \p arr
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_get_dims(dim_t *d0, dim_t *d1, dim_t *d2, dim_t *d3,
                             const af_array arr);

    /**
        \brief Gets the number of dimensions of an array.

        \param[out] result is the output that contains the number of dims of \p arr
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_get_numdims(unsigned *result, const af_array arr);

    /**
        \brief Check if an array is empty.

        \param[out] result is true if elements of arr is 0, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_empty        (bool *result, const af_array arr);

    /**
        \brief Check if an array is scalar, ie. single element.

        \param[out] result is true if elements of arr is 1, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_scalar       (bool *result, const af_array arr);

    /**
        \brief Check if an array is row vector.

        \param[out] result is true if arr has dims [1 x 1 1], false otherwise
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_row          (bool *result, const af_array arr);

    /**
        \brief Check if an array is a column vector

        \param[out] result is true if arr has dims [x 1 1 1], false otherwise
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_column       (bool *result, const af_array arr);

    /**
        \brief Check if an array is a vector

        A vector is any array that has exactly 1 dimension not equal to 1.

        \param[out] result is true if arr is a vector, false otherwise
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_vector       (bool *result, const af_array arr);

    /**
        \brief Check if an array is complex type

        \param[out] result is true if arr is of type \ref c32 or \ref c64, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_complex      (bool *result, const af_array arr);

    /**
        \brief Check if an array is real type

        This is mutually exclusive to \ref af_is_complex

        \param[out] result is true if arr is NOT of type \ref c32 or \ref c64, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_real         (bool *result, const af_array arr);

    /**
        \brief Check if an array is double precision type

        \param[out] result is true if arr is of type \ref f64 or \ref c64, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_double       (bool *result, const af_array arr);

    /**
        \brief Check if an array is single precision type

        \param[out] result is true if arr is of type \ref f32 or \ref c32, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_single       (bool *result, const af_array arr);

    /**
        \brief Check if an array is real floating point type

        \param[out] result is true if arr is of type \ref f32 or \ref f64, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_realfloating (bool *result, const af_array arr);

    /**
        \brief Check if an array is floating precision type

        This is a combination of \ref af_is_realfloating and \ref af_is_complex

        \param[out] result is true if arr is of type \ref f32, \ref f64, \ref c32 or \ref c64, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_floating     (bool *result, const af_array arr);

    /**
        \brief Check if an array is integer type

        \param[out] result is true if arr is of integer types, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_integer      (bool *result, const af_array arr);

    /**
        \brief Check if an array is bool type

        \param[out] result is true if arr is of \ref b8 type, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_bool         (bool *result, const af_array arr);
    /**
        @}
    */

#ifdef __cplusplus
}
#endif