File: getting_started.cpp

package info (click to toggle)
arrayfire 3.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 109,016 kB
  • sloc: cpp: 127,909; lisp: 6,878; python: 3,923; ansic: 1,051; sh: 347; makefile: 338; xml: 175
file content (300 lines) | stat: -rw-r--r-- 10,156 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <gtest/gtest.h>
#include <arrayfire.h>
#include <vector>
#include <complex>
#include <testHelpers.hpp>

using namespace af;
using std::vector;
using std::abs;

TEST(GettingStarted, SNIPPET_getting_started_gen)
{

    //! [ex_getting_started_gen]
    // Generate an array of size three filled with zeros.
    // If no data type is specified, ArrayFire defaults to f32.
    // The af::constant function generates the data on the device.
    array zeros      = constant(0, 3);

    // Generate a 1x4 array of uniformly distributed [0,1] random numbers
    // The af::randu function generates the data on the device.
    array rand1      = randu(1, 4);

    // Generate a 2x2 array (or matrix, if you prefer) of random numbers
    // sampled from a normal distribution.
    // The af::randn function generates data on the device.
    array rand2      = randn(2, 2);

    // Generate a 3x3 identity matrix. The data is generated on the device.
    array iden       = af::identity(3, 3);

    // Lastly, create a 2x1 array (column vector) of uniformly distributed
    // 32-bit complex numbers (c32 data type):
    array randcplx   = randu(2, 1, c32);
    //! [ex_getting_started_gen]

    {
        vector<float> output;
        output.resize(zeros.elements());
        zeros.host(&output.front());
        ASSERT_EQ(f32, zeros.type());
        for(dim_t i = 0; i < zeros.elements(); i++) ASSERT_FLOAT_EQ(0, output[i]);
    }

    if (!noDoubleTests<double>()) {
        array ones       = constant(1, 3, 2, f64);
        vector<double> output(ones.elements());
        ones.host(&output.front());
        ASSERT_EQ(f64, ones.type());
        for(dim_t i = 0; i < ones.elements(); i++) ASSERT_FLOAT_EQ(1, output[i]);
    }

    {
        vector<float> output;
        output.resize(iden.elements());
        iden.host(&output.front());
        for(dim_t i = 0; i < iden.dims(0); i++)
            for(dim_t j = 0; j < iden.dims(1); j++)
                if(i == j)  ASSERT_FLOAT_EQ(1, output[i * iden.dims(0) + j]);
                else        ASSERT_FLOAT_EQ(0, output[i * iden.dims(0) + j]);
    }
}

TEST(GettingStarted, SNIPPET_getting_started_init)
{
    //! [ex_getting_started_init]
    // Create a six-element array on the host
    float hA[] = {0, 1, 2, 3, 4, 5};

    // Which can be copied into an ArrayFire Array using the pointer copy
    // constructor. Here we copy the data into a 2x3 matrix:
    array A(2, 3, hA);

    // ArrayFire provides a convenince function for printing af::array
    // objects in case you wish to see how the data is stored:
    af_print(A);

    // This technique can also be used to populate an array with complex
    // data (stored in {{real, imaginary}, {real, imaginary},  ... } format
    // as found in C's complex.h and C++'s <complex>.
    // Below we create a 3x1 column vector of complex data values:
    array dB(3, 1, (cfloat*) hA); // 3x1 column vector of complex numbers
    af_print(dB);

    //! [ex_getting_started_init]

    vector<float> out(A.elements());
    A.host(&out.front());
    for(unsigned int i = 0; i < out.size(); i++) ASSERT_FLOAT_EQ(hA[i], out[i]);
}

TEST(GettingStarted, SNIPPET_getting_started_print)
{
    //! [ex_getting_started_print]
    // Generate two arrays
    array a = randu(2, 2);
    array b = constant(1, 2, 1);

    // Print them to the console using af_print
    af_print(a);
    af_print(b);

    // Print the results of an expression involving arrays:
    af_print(a.col(0) + b + .4);
    //! [ex_getting_started_print]
    array result = a.col(0) + b + 0.4;
    vector<float> outa(a.elements());
    vector<float> outb(b.elements());
    vector<float> out(result.elements());

    a.host(&outa.front());
    b.host(&outb.front());
    result.host(&out.front());

    for(unsigned i = 0; i < outb.size(); i++) ASSERT_FLOAT_EQ(outa[i] + outb[i] + 0.4, out[i]);
}

TEST(GettingStarted, SNIPPET_getting_started_dims)
{
    //! [ex_getting_started_dims]
    // Create a 4x5x2 array of uniformly distributed random numbers
    array a = randu(4,5,2);
    // Determine the number of dimensions using the numdims() function:
    printf("numdims(a)  %d\n",  a.numdims()); // 3

    // We can also find the size of the individual dimentions using either
    // the `dims` function:
    printf("dims = [%lld %lld]\n", a.dims(0), a.dims(1)); // 4,5

    // Or the elements of a af::dim4 object:
    dim4 dims = a.dims();
    printf("dims = [%lld %lld]\n", dims[0], dims[1]); // 4,5
    //! [ex_getting_started_dims]

    //! [ex_getting_started_prop]
    // Get the type stored in the array. This will be one of the many
    // `af_dtype`s presented above:
    printf("underlying type: %d\n", a.type());

    // Arrays also have several conveience functions to determine if
    // an Array contains complex or real values:
    printf("is complex? %d    is real? %d\n", a.iscomplex(), a.isreal());

    // if it is a column or row vector
    printf("is vector? %d  column? %d  row? %d\n", a.isvector(), a.iscolumn(), a.isrow());

    // and whether or not the array is empty and how much memory it takes on
    // the device:
    printf("empty? %d  total elements: %lld  bytes: %lu\n", a.isempty(), a.elements(), a.bytes());
    //! [ex_getting_started_prop]

    ASSERT_EQ(f32, a.type());
    ASSERT_TRUE(a.isreal());
    ASSERT_FALSE(a.iscomplex());
    ASSERT_FALSE(a.isvector());
    ASSERT_FALSE(a.iscolumn());
    ASSERT_FALSE(a.isrow());
    ASSERT_FALSE(a.isempty());
    ASSERT_EQ(40, a.elements());

    ASSERT_EQ(f32, a.type());
    ASSERT_EQ(f32, a.type());

    ASSERT_EQ(4, dims[0]);
    ASSERT_EQ(4, a.dims(0));
    ASSERT_EQ(5, dims[1]);
    ASSERT_EQ(5, a.dims(1));
}

TEST(GettingStarted, SNIPPET_getting_started_arith)
{
    //! [ex_getting_started_arith]
    array R = randu(3, 3);
    af_print(constant(1, 3, 3) + af::complex(sin(R)));  // will be c32

    // rescale complex values to unit circle
    array a = randn(5, c32);
    af_print(a / abs(a));

    // calculate L2 norm of vectors
    array X = randn(3, 4);
    af_print(sqrt(sum(pow(X, 2))));     // norm of every column vector
    af_print(sqrt(sum(pow(X, 2), 0)));  // same as above
    af_print(sqrt(sum(pow(X, 2), 1)));  // norm of every row vector
    //! [ex_getting_started_arith]
}

TEST(GettingStarted, SNIPPET_getting_started_dev_ptr)
{
#ifdef __CUDACC__
    //! [ex_getting_started_dev_ptr]
    // Create an array on the host, copy it into an ArrayFire 2x3 ArrayFire array
    float host_ptr[] = {0,1,2,3,4,5};
    array a(2, 3, host_ptr);

    // Create a CUDA device pointer, populate it with data from the host
    float *device_ptr;
    cudaMalloc((void**)&device_ptr, 6*sizeof(float));
    cudaMemcpy(device_ptr, host_ptr, 6*sizeof(float), cudaMemcpyHostToDevice);

    // Convert the CUDA-allocated device memory into an ArrayFire array:
    array b(2,3, device_ptr, afDevice); // Note: afDevice (default: afHost)
    // Note that ArrayFire takes ownership over `device_ptr`, so memory will
    // be freed when `b` id destructed. Do not call cudaFree(device_ptr)!

    //! [ex_getting_started_dev_ptr]
#endif //__CUDACC__
}

TEST(GettingStarted, SNIPPET_getting_started_ptr)
{
#ifdef __CUDACC__
    //! [ex_getting_started_ptr]
    // Create an array consisting of 3 random numbers
    array a = randu(3, f32);

    // Copy an array on the device to the host:
    float * host_a = a.host<float>();
    // access the host data as a normal array
    printf("host_a[2] = %g\n", host_a[2]);  // last element
    // and free memory using delete:
    delete[] host_a;

    // Get access to the device memory for a CUDA kernel
    float * d_cuda = a.device<float>();    // no need to free this
    float value;
    cudaMemcpy(&value, d_cuda + 2, sizeof(float), cudaMemcpyDeviceToHost);
    printf("d_cuda[2] = %g\n", value);
    a.unlock(); // unlock to allow garbage collection if necessary

    // Because OpenCL uses references rather than pointers, accessing memory
    // is similar, but has a somewhat clunky syntax. For the C-API
    cl_mem d_opencl = (cl_mem) a.device<float>();
    // for the C++ API, you can just wrap this object into a cl::Buffer
    // after calling clRetainMemObject.

    //! [ex_getting_started_ptr]
#endif //__CUDACC__
}


TEST(GettingStarted, SNIPPET_getting_started_scalar)
{
    //! [ex_getting_started_scalar]
    array a = randu(3);
    float val = a.scalar<float>();
    printf("scalar value: %g\n", val);
    //! [ex_getting_started_scalar]
}

TEST(GettingStarted, SNIPPET_getting_started_bit)
{
    //! [ex_getting_started_bit]
    int h_A[] = {1, 1, 0, 0, 4, 0, 0, 2, 0};
    int h_B[] = {1, 0, 1, 0, 1, 0, 1, 1, 1};
    array A = array(3, 3, h_A), B = array(3, 3, h_B);
    af_print(A); af_print(B);

    array A_and_B = A & B; af_print(A_and_B);
    array  A_or_B = A | B; af_print(A_or_B);
    array A_xor_B = A ^ B; af_print(A_xor_B);
    //! [ex_getting_started_bit]

    vector<int> Andout(A_and_B.elements());
    vector<int> Orout(A_or_B.elements());
    vector<int> Xorout(A_xor_B.elements());
    A_and_B.host(&Andout.front());
    A_or_B.host(&Orout.front());
    A_xor_B.host(&Xorout.front());


    for(unsigned int i = 0; i < Andout.size(); i++) ASSERT_FLOAT_EQ(h_A[i] & h_B[i], Andout[i]);
    for(unsigned int i = 0; i < Orout.size(); i++)  ASSERT_FLOAT_EQ(h_A[i] | h_B[i], Orout[i]);
    for(unsigned int i = 0; i < Xorout.size(); i++) ASSERT_FLOAT_EQ(h_A[i] ^ h_B[i], Xorout[i]);
}


TEST(GettingStarted, SNIPPET_getting_started_constants)
{
    //! [ex_getting_started_constants]
    array A = randu(5,5);
    A(where(A > .5)) = af::NaN;

    array x = randu(10e6), y = randu(10e6);
    double pi_est = 4 * sum<float>(hypot(x,y) < 1) / 10e6;
    printf("estimation error: %g\n", fabs(Pi - pi_est));
    //! [ex_getting_started_constants]

    ASSERT_LE(fabs(Pi-pi_est), 0.005);
}