1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
/*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <gtest/gtest.h>
#include <arrayfire.h>
#include <af/dim4.hpp>
#include <af/traits.hpp>
#include <af/compatible.h>
#include <string>
#include <vector>
#include <cmath>
#include <testHelpers.hpp>
#include <typeinfo>
using std::string;
using std::vector;
using std::abs;
using af::dim4;
template<typename T>
class Homography : public ::testing::Test
{
public:
virtual void SetUp() {}
};
typedef ::testing::Types<float, double> TestTypes;
TYPED_TEST_CASE(Homography, TestTypes);
template<typename T>
af::array perspectiveTransform(af::dim4 inDims, af::array H)
{
T d0 = (T)inDims[0];
T d1 = (T)inDims[1];
af::dim4 dims(4, 3);
T h_in[4*3] = { (T)0, (T)0, (T)d1, (T)d1,
(T)0, (T)d0, (T)d0, (T)0,
(T)1, (T)1, (T)1, (T)1 };
af::array in(dims, h_in);
af::array w = 1.f / af::matmul(in, H(af::span, 2));
af::array xt = af::matmul(in, H(af::span, 0)) * w;
af::array yt = af::matmul(in, H(af::span, 1)) * w;
af::array t = join(1, xt, yt);
return t;
}
template<typename T>
void homographyTest(string pTestFile, const af_homography_type htype,
const bool rotate, const float size_ratio)
{
if (noDoubleTests<T>()) return;
if (noImageIOTests()) return;
vector<dim4> inDims;
vector<string> inFiles;
vector<vector<float> > gold;
readImageTests(pTestFile, inDims, inFiles, gold);
inFiles[0].insert(0,string(TEST_DIR"/homography/"));
af_array trainArray_f32 = 0;
af_array trainArray = 0;
af_array train_desc = 0;
af_array train_feat_x = 0;
af_array train_feat_y = 0;
af_features train_feat;
ASSERT_EQ(AF_SUCCESS, af_load_image(&trainArray_f32, inFiles[0].c_str(), false));
ASSERT_EQ(AF_SUCCESS, conv_image<T>(&trainArray, trainArray_f32));
ASSERT_EQ(AF_SUCCESS, af_orb(&train_feat, &train_desc, trainArray, 20.0f, 2000, 1.2f, 8, true));
ASSERT_EQ(AF_SUCCESS, af_get_features_xpos(&train_feat_x, train_feat));
ASSERT_EQ(AF_SUCCESS, af_get_features_ypos(&train_feat_y, train_feat));
af_array queryArray = 0;
af_array query_desc = 0;
af_array idx = 0;
af_array dist = 0;
af_array const_50 = 0;
af_array dist_thr = 0;
af_array train_idx = 0;
af_array query_idx = 0;
af_array query_feat_x = 0;
af_array query_feat_y = 0;
af_array H = 0;
af_array train_feat_x_idx = 0;
af_array train_feat_y_idx = 0;
af_array query_feat_x_idx = 0;
af_array query_feat_y_idx = 0;
af_features query_feat;
const float theta = af::Pi * 0.5f;
const dim_t test_d0 = inDims[0][0] * size_ratio;
const dim_t test_d1 = inDims[0][1] * size_ratio;
if (rotate)
ASSERT_EQ(AF_SUCCESS, af_rotate(&queryArray, trainArray, theta, false, AF_INTERP_NEAREST));
else
ASSERT_EQ(AF_SUCCESS, af_resize(&queryArray, trainArray, test_d0, test_d1, AF_INTERP_BILINEAR));
ASSERT_EQ(AF_SUCCESS, af_orb(&query_feat, &query_desc, queryArray, 20.0f, 2000, 1.2f, 8, true));
ASSERT_EQ(AF_SUCCESS, af_hamming_matcher(&idx, &dist, train_desc, query_desc, 0, 1));
dim_t distDims[4];
ASSERT_EQ(AF_SUCCESS, af_get_dims(&distDims[0], &distDims[1], &distDims[2], &distDims[3], dist));
ASSERT_EQ(AF_SUCCESS, af_constant(&const_50, 50, 2, distDims, u32));
ASSERT_EQ(AF_SUCCESS, af_lt(&dist_thr, dist, const_50, false));
ASSERT_EQ(AF_SUCCESS, af_where(&train_idx, dist_thr));
dim_t tidxDims[4];
ASSERT_EQ(AF_SUCCESS, af_get_dims(&tidxDims[0], &tidxDims[1], &tidxDims[2], &tidxDims[3], train_idx));
af_index_t tindexs;
tindexs.isSeq = false;
tindexs.idx.seq = af_make_seq(0, tidxDims[0]-1, 1);
tindexs.idx.arr = train_idx;
ASSERT_EQ(AF_SUCCESS, af_index_gen(&query_idx, idx, 1, &tindexs));
ASSERT_EQ(AF_SUCCESS, af_get_features_xpos(&query_feat_x, query_feat));
ASSERT_EQ(AF_SUCCESS, af_get_features_ypos(&query_feat_y, query_feat));
dim_t qidxDims[4];
ASSERT_EQ(AF_SUCCESS, af_get_dims(&qidxDims[0], &qidxDims[1], &qidxDims[2], &qidxDims[3], query_idx));
af_index_t qindexs;
qindexs.isSeq = false;
qindexs.idx.seq = af_make_seq(0, qidxDims[0]-1, 1);
qindexs.idx.arr = query_idx;
ASSERT_EQ(AF_SUCCESS, af_index_gen(&train_feat_x_idx, train_feat_x, 1, &tindexs));
ASSERT_EQ(AF_SUCCESS, af_index_gen(&train_feat_y_idx, train_feat_y, 1, &tindexs));
ASSERT_EQ(AF_SUCCESS, af_index_gen(&query_feat_x_idx, query_feat_x, 1, &qindexs));
ASSERT_EQ(AF_SUCCESS, af_index_gen(&query_feat_y_idx, query_feat_y, 1, &qindexs));
int inliers = 0;
ASSERT_EQ(AF_SUCCESS, af_homography(&H, &inliers, train_feat_x_idx, train_feat_y_idx,
query_feat_x_idx, query_feat_y_idx, htype,
3.0f, 1000, (af_dtype) af::dtype_traits<T>::af_type));
af::array HH(H);
af::array t = perspectiveTransform<T>(inDims[0], HH);
T* gold_t = new T[8];
for (int i = 0; i < 8; i++)
gold_t[i] = (T)0;
if (rotate) {
gold_t[1] = test_d0;
gold_t[2] = test_d0;
gold_t[4] = test_d1;
gold_t[5] = test_d1;
} else {
gold_t[2] = test_d1;
gold_t[3] = test_d1;
gold_t[5] = test_d0;
gold_t[6] = test_d0;
}
T* out_t = new T[8];
t.host(out_t);
for (int elIter = 0; elIter < 8; elIter++)
ASSERT_LE(fabs(out_t[elIter] - gold_t[elIter]), 70.f) << "at: " << elIter << std::endl;
delete[] gold_t;
delete[] out_t;
ASSERT_EQ(AF_SUCCESS, af_release_array(queryArray));
ASSERT_EQ(AF_SUCCESS, af_release_array(query_desc));
ASSERT_EQ(AF_SUCCESS, af_release_array(idx));
ASSERT_EQ(AF_SUCCESS, af_release_array(dist));
ASSERT_EQ(AF_SUCCESS, af_release_array(const_50));
ASSERT_EQ(AF_SUCCESS, af_release_array(dist_thr));
ASSERT_EQ(AF_SUCCESS, af_release_array(train_idx));
ASSERT_EQ(AF_SUCCESS, af_release_array(query_idx));
ASSERT_EQ(AF_SUCCESS, af_release_array(query_feat_x));
ASSERT_EQ(AF_SUCCESS, af_release_array(query_feat_y));
ASSERT_EQ(AF_SUCCESS, af_release_array(train_feat_x_idx));
ASSERT_EQ(AF_SUCCESS, af_release_array(train_feat_y_idx));
ASSERT_EQ(AF_SUCCESS, af_release_array(query_feat_x_idx));
ASSERT_EQ(AF_SUCCESS, af_release_array(query_feat_y_idx));
ASSERT_EQ(AF_SUCCESS, af_release_array(trainArray));
ASSERT_EQ(AF_SUCCESS, af_release_array(trainArray_f32));
ASSERT_EQ(AF_SUCCESS, af_release_array(train_desc));
ASSERT_EQ(AF_SUCCESS, af_release_array(train_feat_x));
ASSERT_EQ(AF_SUCCESS, af_release_array(train_feat_y));
}
#define HOMOGRAPHY_INIT(desc, image, htype, rotate, size_ratio) \
TYPED_TEST(Homography, desc) \
{ \
homographyTest<TypeParam>(string(TEST_DIR"/homography/"#image".test"), \
htype, rotate, size_ratio); \
}
HOMOGRAPHY_INIT(Tux_RANSAC, tux, AF_HOMOGRAPHY_RANSAC, false, 1.0f);
HOMOGRAPHY_INIT(Tux_RANSAC_90degrees, tux, AF_HOMOGRAPHY_RANSAC, true, 1.0f);
HOMOGRAPHY_INIT(Tux_RANSAC_resize, tux, AF_HOMOGRAPHY_RANSAC, false, 1.5f);
//HOMOGRAPHY_INIT(Tux_LMedS, tux, AF_HOMOGRAPHY_LMEDS, false, 1.0f);
//HOMOGRAPHY_INIT(Tux_LMedS_90degrees, tux, AF_HOMOGRAPHY_LMEDS, true, 1.0f);
//HOMOGRAPHY_INIT(Tux_LMedS_resize, tux, AF_HOMOGRAPHY_LMEDS, false, 1.5f);
///////////////////////////////////// CPP ////////////////////////////////
//
TEST(Homography, CPP)
{
if (noImageIOTests()) return;
vector<dim4> inDims;
vector<string> inFiles;
vector<vector<float> > gold;
readImageTests(string(TEST_DIR"/homography/tux.test"), inDims, inFiles, gold);
inFiles[0].insert(0,string(TEST_DIR"/homography/"));
const float size_ratio = 0.5f;
af::array train_img = af::loadImage(inFiles[0].c_str(), false);
af::array query_img = af::resize(size_ratio, train_img);
af::dim4 tDims = train_img.dims();
af::features feat_train, feat_query;
af::array desc_train, desc_query;
orb(feat_train, desc_train, train_img, 20, 2000, 1.2, 8, true);
orb(feat_query, desc_query, query_img, 20, 2000, 1.2, 8, true);
af::array idx, dist;
af::hammingMatcher(idx, dist, desc_train, desc_query, 0, 1);
af::array train_idx = where(dist < 30);
af::array query_idx = idx(train_idx);
af::array feat_train_x = feat_train.getX()(train_idx);
af::array feat_train_y = feat_train.getY()(train_idx);
af::array feat_train_score = feat_train.getScore()(train_idx);
af::array feat_train_orientation = feat_train.getOrientation()(train_idx);
af::array feat_train_size = feat_train.getSize()(train_idx);
af::array feat_query_x = feat_query.getX()(query_idx);
af::array feat_query_y = feat_query.getY()(query_idx);
af::array feat_query_score = feat_query.getScore()(query_idx);
af::array feat_query_orientation = feat_query.getOrientation()(query_idx);
af::array feat_query_size = feat_query.getSize()(query_idx);
af::array H;
int inliers = 0;
af::homography(H, inliers, feat_train_x, feat_train_y, feat_query_x, feat_query_y, AF_HOMOGRAPHY_RANSAC, 3.0f, 1000, f32);
float* gold_t = new float[8];
for (int i = 0; i < 8; i++)
gold_t[i] = 0.f;
gold_t[2] = tDims[1] * size_ratio;
gold_t[3] = tDims[1] * size_ratio;
gold_t[5] = tDims[0] * size_ratio;
gold_t[6] = tDims[0] * size_ratio;
af::array t = perspectiveTransform<float>(train_img.dims(), H);
float* out_t = new float[4*2];
t.host(out_t);
for (int elIter = 0; elIter < 8; elIter++)
ASSERT_LE(fabs(out_t[elIter] - gold_t[elIter]), 70.f) << "at: " << elIter << std::endl;
delete[] gold_t;
delete[] out_t;
}
|