File: homography.cpp

package info (click to toggle)
arrayfire 3.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 109,016 kB
  • sloc: cpp: 127,909; lisp: 6,878; python: 3,923; ansic: 1,051; sh: 347; makefile: 338; xml: 175
file content (281 lines) | stat: -rw-r--r-- 10,329 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <gtest/gtest.h>
#include <arrayfire.h>
#include <af/dim4.hpp>
#include <af/traits.hpp>
#include <af/compatible.h>
#include <string>
#include <vector>
#include <cmath>
#include <testHelpers.hpp>
#include <typeinfo>

using std::string;
using std::vector;
using std::abs;
using af::dim4;

template<typename T>
class Homography : public ::testing::Test
{
    public:
        virtual void SetUp() {}
};

typedef ::testing::Types<float, double> TestTypes;

TYPED_TEST_CASE(Homography, TestTypes);

template<typename T>
af::array perspectiveTransform(af::dim4 inDims, af::array H)
{
    T d0 = (T)inDims[0];
    T d1 = (T)inDims[1];
    af::dim4 dims(4, 3);
    T h_in[4*3] = { (T)0, (T)0,  (T)d1, (T)d1,
                    (T)0, (T)d0, (T)d0, (T)0,
                    (T)1, (T)1,  (T)1,  (T)1 };

    af::array in(dims, h_in);

    af::array w = 1.f / af::matmul(in, H(af::span, 2));
    af::array xt = af::matmul(in, H(af::span, 0)) * w;
    af::array yt = af::matmul(in, H(af::span, 1)) * w;

    af::array t = join(1, xt, yt);

    return t;
}

template<typename T>
void homographyTest(string pTestFile, const af_homography_type htype,
                    const bool rotate, const float size_ratio)
{
    if (noDoubleTests<T>()) return;
    if (noImageIOTests()) return;

    vector<dim4>           inDims;
    vector<string>         inFiles;
    vector<vector<float> > gold;

    readImageTests(pTestFile, inDims, inFiles, gold);

    inFiles[0].insert(0,string(TEST_DIR"/homography/"));

    af_array trainArray_f32   = 0;
    af_array trainArray       = 0;
    af_array train_desc       = 0;
    af_array train_feat_x     = 0;
    af_array train_feat_y     = 0;
    af_features train_feat;

    ASSERT_EQ(AF_SUCCESS, af_load_image(&trainArray_f32, inFiles[0].c_str(), false));
    ASSERT_EQ(AF_SUCCESS, conv_image<T>(&trainArray, trainArray_f32));

    ASSERT_EQ(AF_SUCCESS, af_orb(&train_feat, &train_desc, trainArray, 20.0f, 2000, 1.2f, 8, true));

    ASSERT_EQ(AF_SUCCESS, af_get_features_xpos(&train_feat_x, train_feat));
    ASSERT_EQ(AF_SUCCESS, af_get_features_ypos(&train_feat_y, train_feat));

    af_array queryArray       = 0;
    af_array query_desc       = 0;
    af_array idx              = 0;
    af_array dist             = 0;
    af_array const_50         = 0;
    af_array dist_thr         = 0;
    af_array train_idx        = 0;
    af_array query_idx        = 0;
    af_array query_feat_x     = 0;
    af_array query_feat_y     = 0;
    af_array H                = 0;
    af_array train_feat_x_idx = 0;
    af_array train_feat_y_idx = 0;
    af_array query_feat_x_idx = 0;
    af_array query_feat_y_idx = 0;
    af_features query_feat;

    const float theta = af::Pi * 0.5f;
    const dim_t test_d0 = inDims[0][0] * size_ratio;
    const dim_t test_d1 = inDims[0][1] * size_ratio;
    if (rotate)
        ASSERT_EQ(AF_SUCCESS, af_rotate(&queryArray, trainArray, theta, false, AF_INTERP_NEAREST));
    else
        ASSERT_EQ(AF_SUCCESS, af_resize(&queryArray, trainArray, test_d0, test_d1, AF_INTERP_BILINEAR));

    ASSERT_EQ(AF_SUCCESS, af_orb(&query_feat, &query_desc, queryArray, 20.0f, 2000, 1.2f, 8, true));

    ASSERT_EQ(AF_SUCCESS, af_hamming_matcher(&idx, &dist, train_desc, query_desc, 0, 1));

    dim_t distDims[4];
    ASSERT_EQ(AF_SUCCESS, af_get_dims(&distDims[0], &distDims[1], &distDims[2], &distDims[3], dist));

    ASSERT_EQ(AF_SUCCESS, af_constant(&const_50, 50, 2, distDims, u32));
    ASSERT_EQ(AF_SUCCESS, af_lt(&dist_thr, dist, const_50, false));
    ASSERT_EQ(AF_SUCCESS, af_where(&train_idx, dist_thr));

    dim_t tidxDims[4];
    ASSERT_EQ(AF_SUCCESS, af_get_dims(&tidxDims[0], &tidxDims[1], &tidxDims[2], &tidxDims[3], train_idx));
    af_index_t tindexs;
    tindexs.isSeq = false;
    tindexs.idx.seq = af_make_seq(0, tidxDims[0]-1, 1);
    tindexs.idx.arr = train_idx;
    ASSERT_EQ(AF_SUCCESS, af_index_gen(&query_idx, idx, 1, &tindexs));

    ASSERT_EQ(AF_SUCCESS, af_get_features_xpos(&query_feat_x, query_feat));
    ASSERT_EQ(AF_SUCCESS, af_get_features_ypos(&query_feat_y, query_feat));

    dim_t qidxDims[4];
    ASSERT_EQ(AF_SUCCESS, af_get_dims(&qidxDims[0], &qidxDims[1], &qidxDims[2], &qidxDims[3], query_idx));
    af_index_t qindexs;
    qindexs.isSeq = false;
    qindexs.idx.seq = af_make_seq(0, qidxDims[0]-1, 1);
    qindexs.idx.arr = query_idx;

    ASSERT_EQ(AF_SUCCESS, af_index_gen(&train_feat_x_idx, train_feat_x, 1, &tindexs));
    ASSERT_EQ(AF_SUCCESS, af_index_gen(&train_feat_y_idx, train_feat_y, 1, &tindexs));
    ASSERT_EQ(AF_SUCCESS, af_index_gen(&query_feat_x_idx, query_feat_x, 1, &qindexs));
    ASSERT_EQ(AF_SUCCESS, af_index_gen(&query_feat_y_idx, query_feat_y, 1, &qindexs));

    int inliers = 0;
    ASSERT_EQ(AF_SUCCESS, af_homography(&H, &inliers, train_feat_x_idx, train_feat_y_idx,
                                        query_feat_x_idx, query_feat_y_idx, htype,
                                        3.0f, 1000, (af_dtype) af::dtype_traits<T>::af_type));

    af::array HH(H);

    af::array t = perspectiveTransform<T>(inDims[0], HH);

    T* gold_t = new T[8];
    for (int i = 0; i < 8; i++)
        gold_t[i] = (T)0;
    if (rotate) {
        gold_t[1] = test_d0;
        gold_t[2] = test_d0;
        gold_t[4] = test_d1;
        gold_t[5] = test_d1;
    } else {
        gold_t[2] = test_d1;
        gold_t[3] = test_d1;
        gold_t[5] = test_d0;
        gold_t[6] = test_d0;
    }

    T* out_t = new T[8];
    t.host(out_t);

    for (int elIter = 0; elIter < 8; elIter++)
        ASSERT_LE(fabs(out_t[elIter] - gold_t[elIter]), 70.f) << "at: " << elIter << std::endl;

    delete[] gold_t;
    delete[] out_t;

    ASSERT_EQ(AF_SUCCESS, af_release_array(queryArray));

    ASSERT_EQ(AF_SUCCESS, af_release_array(query_desc));
    ASSERT_EQ(AF_SUCCESS, af_release_array(idx));
    ASSERT_EQ(AF_SUCCESS, af_release_array(dist));
    ASSERT_EQ(AF_SUCCESS, af_release_array(const_50));
    ASSERT_EQ(AF_SUCCESS, af_release_array(dist_thr));
    ASSERT_EQ(AF_SUCCESS, af_release_array(train_idx));
    ASSERT_EQ(AF_SUCCESS, af_release_array(query_idx));
    ASSERT_EQ(AF_SUCCESS, af_release_array(query_feat_x));
    ASSERT_EQ(AF_SUCCESS, af_release_array(query_feat_y));
    ASSERT_EQ(AF_SUCCESS, af_release_array(train_feat_x_idx));
    ASSERT_EQ(AF_SUCCESS, af_release_array(train_feat_y_idx));
    ASSERT_EQ(AF_SUCCESS, af_release_array(query_feat_x_idx));
    ASSERT_EQ(AF_SUCCESS, af_release_array(query_feat_y_idx));

    ASSERT_EQ(AF_SUCCESS, af_release_array(trainArray));
    ASSERT_EQ(AF_SUCCESS, af_release_array(trainArray_f32));
    ASSERT_EQ(AF_SUCCESS, af_release_array(train_desc));
    ASSERT_EQ(AF_SUCCESS, af_release_array(train_feat_x));
    ASSERT_EQ(AF_SUCCESS, af_release_array(train_feat_y));
}

#define HOMOGRAPHY_INIT(desc, image, htype, rotate, size_ratio)                 \
    TYPED_TEST(Homography, desc)                                                \
    {                                                                           \
        homographyTest<TypeParam>(string(TEST_DIR"/homography/"#image".test"),  \
                                  htype, rotate, size_ratio);                   \
    }

    HOMOGRAPHY_INIT(Tux_RANSAC, tux, AF_HOMOGRAPHY_RANSAC, false, 1.0f);
    HOMOGRAPHY_INIT(Tux_RANSAC_90degrees, tux, AF_HOMOGRAPHY_RANSAC, true, 1.0f);
    HOMOGRAPHY_INIT(Tux_RANSAC_resize, tux, AF_HOMOGRAPHY_RANSAC, false, 1.5f);
    //HOMOGRAPHY_INIT(Tux_LMedS, tux, AF_HOMOGRAPHY_LMEDS, false, 1.0f);
    //HOMOGRAPHY_INIT(Tux_LMedS_90degrees, tux, AF_HOMOGRAPHY_LMEDS, true, 1.0f);
    //HOMOGRAPHY_INIT(Tux_LMedS_resize, tux, AF_HOMOGRAPHY_LMEDS, false, 1.5f);

///////////////////////////////////// CPP ////////////////////////////////
//
TEST(Homography, CPP)
{
    if (noImageIOTests()) return;

    vector<dim4>           inDims;
    vector<string>         inFiles;
    vector<vector<float> > gold;

    readImageTests(string(TEST_DIR"/homography/tux.test"), inDims, inFiles, gold);

    inFiles[0].insert(0,string(TEST_DIR"/homography/"));

    const float size_ratio = 0.5f;

    af::array train_img = af::loadImage(inFiles[0].c_str(), false);
    af::array query_img = af::resize(size_ratio, train_img);
    af::dim4 tDims = train_img.dims();

    af::features feat_train, feat_query;
    af::array desc_train, desc_query;
    orb(feat_train, desc_train, train_img, 20, 2000, 1.2, 8, true);
    orb(feat_query, desc_query, query_img, 20, 2000, 1.2, 8, true);

    af::array idx, dist;
    af::hammingMatcher(idx, dist, desc_train, desc_query, 0, 1);

    af::array train_idx = where(dist < 30);
    af::array query_idx = idx(train_idx);

    af::array feat_train_x = feat_train.getX()(train_idx);
    af::array feat_train_y = feat_train.getY()(train_idx);
    af::array feat_train_score = feat_train.getScore()(train_idx);
    af::array feat_train_orientation = feat_train.getOrientation()(train_idx);
    af::array feat_train_size = feat_train.getSize()(train_idx);
    af::array feat_query_x = feat_query.getX()(query_idx);
    af::array feat_query_y = feat_query.getY()(query_idx);
    af::array feat_query_score = feat_query.getScore()(query_idx);
    af::array feat_query_orientation = feat_query.getOrientation()(query_idx);
    af::array feat_query_size = feat_query.getSize()(query_idx);

    af::array H;
    int inliers = 0;
    af::homography(H, inliers, feat_train_x, feat_train_y, feat_query_x, feat_query_y, AF_HOMOGRAPHY_RANSAC, 3.0f, 1000, f32);

    float* gold_t = new float[8];
    for (int i = 0; i < 8; i++)
        gold_t[i] = 0.f;
    gold_t[2] = tDims[1] * size_ratio;
    gold_t[3] = tDims[1] * size_ratio;
    gold_t[5] = tDims[0] * size_ratio;
    gold_t[6] = tDims[0] * size_ratio;

    af::array t = perspectiveTransform<float>(train_img.dims(), H);

    float* out_t = new float[4*2];
    t.host(out_t);

    for (int elIter = 0; elIter < 8; elIter++)
        ASSERT_LE(fabs(out_t[elIter] - gold_t[elIter]), 70.f) << "at: " << elIter << std::endl;

    delete[] gold_t;
    delete[] out_t;
}