File: matrix_manipulation.cpp

package info (click to toggle)
arrayfire 3.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 109,016 kB
  • sloc: cpp: 127,909; lisp: 6,878; python: 3,923; ansic: 1,051; sh: 347; makefile: 338; xml: 175
file content (134 lines) | stat: -rw-r--r-- 3,970 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <gtest/gtest.h>
#include <arrayfire.h>
#include <vector>

using namespace af;
using std::vector;

TEST(MatrixManipulation, SNIPPET_matrix_manipulation_tile)
{
    //! [ex_matrix_manipulation_tile]
    float h[] = {1, 2, 3, 4};
    array small_arr = array(2, 2, h); // 2x2 matrix
    af_print(small_arr);
    array large_arr = tile(small_arr, 2, 3);  // produces 4x6 matrix: (2*2)x(2*3)
    af_print(large_arr);
    //! [ex_matrix_manipulation_tile]

    ASSERT_EQ(4, large_arr.dims(0));
    ASSERT_EQ(6, large_arr.dims(1));

    vector<float> h_large_arr(large_arr.elements());
    large_arr.host(&h_large_arr.front());

    unsigned fdim = large_arr.dims(0);
    unsigned sdim = large_arr.dims(1);
    for(unsigned i = 0; i < sdim; i++) {
        for(unsigned j = 0; j < fdim; j++) {
            ASSERT_FLOAT_EQ(h[(i%2) * 2 + (j%2)], h_large_arr[i * fdim + j] );
        }
    }
}

TEST(MatrixManipulation, SNIPPET_matrix_manipulation_join)
{

    //! [ex_matrix_manipulation_join]
    float hA[] = { 1, 2, 3, 4, 5, 6 };
    float hB[] = { 10, 20, 30, 40, 50, 60, 70, 80, 90 };
    array A = array(3, 2, hA);
    array B = array(3, 3, hB);

    af_print(join(1, A, B)); // 3x5 matrix
    // array result = join(0, A, B); // fail: dimension mismatch
    //! [ex_matrix_manipulation_join]

    array out = join(1, A, B);
    vector<float> h_out(out.elements());
    out.host(&h_out.front());
    af_print(out);

    ASSERT_EQ(3, out.dims(0));
    ASSERT_EQ(5, out.dims(1));

    unsigned fdim = out.dims(0);
    unsigned sdim = out.dims(1);
    for(unsigned i = 0; i < sdim; i++) {
        for(unsigned j = 0; j < fdim; j++) {
            if( i < 2 ) {
                ASSERT_FLOAT_EQ(hA[i * fdim + j], h_out[i * fdim + j]) << "At [" << i << ", " << j << "]";
            }
            else {
                ASSERT_FLOAT_EQ(hB[(i - 2) * fdim + j], h_out[i * fdim + j]) << "At [" << i << ", " << j << "]";
            }
        }
    }

}

TEST(MatrixManipulation, SNIPPET_matrix_manipulation_mesh)
{
    //! [ex_matrix_manipulation_mesh]
    float hx[] = {1, 2, 3, 4};
    float hy[] = {5, 6};

    array x = array(4, hx);
    array y = array(2, hy);

    af_print(tile(x, 1, 2));
    af_print(tile(y.T(), 4, 1));
    //! [ex_matrix_manipulation_mesh]

    array outx = tile(x, 1, 2);
    array outy = tile(y.T(), 4, 1);

    ASSERT_EQ(4, outx.dims(0));
    ASSERT_EQ(4, outy.dims(0));
    ASSERT_EQ(2, outx.dims(1));
    ASSERT_EQ(2, outy.dims(1));

    vector<float> houtx(outx.elements());
    outx.host(&houtx.front());
    vector<float> houty(outy.elements());
    outy.host(&houty.front());

    for(unsigned i = 0; i < houtx.size(); i++) ASSERT_EQ(hx[i%4], houtx[i]) << "At [" << i << "]";
    for(unsigned i = 0; i < houty.size(); i++) ASSERT_EQ(hy[i>3], houty[i]) << "At [" << i << "]";
}

TEST(MatrixManipulation, SNIPPET_matrix_manipulation_moddims)
{
    //! [ex_matrix_manipulation_moddims]
    int hA[] = {1, 2, 3, 4, 5, 6};
    array A = array(3, 2, hA);

    af_print(A); // 2x3 matrix
    af_print(moddims(A, 2, 3)); // 2x3 matrix
    af_print(moddims(A, 6, 1)); // 6x1 column vector

    // moddims(A, 2, 2); // fail: wrong number of elements
    // moddims(A, 8, 8); // fail: wrong number of elements
    //! [ex_matrix_manipulation_moddims]
}

TEST(MatrixManipulation, SNIPPET_matrix_manipulation_transpose)
{
    //! [ex_matrix_manipulation_transpose]
    array x = randu(2, 2, f32);
    af_print(x.T());  // transpose (real)

    array c = randu(2, 2, c32);
    af_print(c.T());  // transpose (complex)
    af_print(c.H());  // Hermitian (conjugate) transpose
    //! [ex_matrix_manipulation_transpose]
}