1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <gtest/gtest.h>
#include <arrayfire.h>
#include <af/dim4.hpp>
#include <af/traits.hpp>
#include <vector>
#include <iostream>
#include <string>
#include <testHelpers.hpp>
using std::vector;
using std::string;
using std::cout;
using std::endl;
using std::abs;
using af::cfloat;
using af::cdouble;
template<typename T>
class RotateLinear : public ::testing::Test
{
public:
virtual void SetUp() {
subMat0.push_back(af_make_seq(0, 4, 1));
subMat0.push_back(af_make_seq(2, 6, 1));
subMat0.push_back(af_make_seq(0, 2, 1));
}
vector<af_seq> subMat0;
};
// create a list of types to be tested
typedef ::testing::Types<float, double, cfloat, cdouble, int, intl, char, short> TestTypes;
// register the type list
TYPED_TEST_CASE(RotateLinear, TestTypes);
#define PI 3.1415926535897931f
template<typename T>
void rotateTest(string pTestFile, const unsigned resultIdx, const float angle, const bool crop, const bool recenter, bool isSubRef = false, const vector<af_seq> * seqv = NULL)
{
if (noDoubleTests<T>()) return;
vector<af::dim4> numDims;
vector<vector<T> > in;
vector<vector<T> > tests;
readTests<T, T, float>(pTestFile,numDims,in,tests);
af::dim4 dims = numDims[0];
af_array inArray = 0;
af_array outArray = 0;
af_array tempArray = 0;
float theta = angle * PI / 180.0f;
if (isSubRef) {
ASSERT_EQ(AF_SUCCESS, af_create_array(&tempArray, &(in[0].front()), dims.ndims(), dims.get(), (af_dtype) af::dtype_traits<T>::af_type));
ASSERT_EQ(AF_SUCCESS, af_index(&inArray, tempArray, seqv->size(), &seqv->front()));
} else {
ASSERT_EQ(AF_SUCCESS, af_create_array(&inArray, &(in[0].front()), dims.ndims(), dims.get(), (af_dtype) af::dtype_traits<T>::af_type));
}
ASSERT_EQ(AF_SUCCESS, af_rotate(&outArray, inArray, theta, crop, AF_INTERP_BILINEAR));
// Get result
T* outData = new T[tests[resultIdx].size()];
ASSERT_EQ(AF_SUCCESS, af_get_data_ptr((void*)outData, outArray));
// Compare result
size_t nElems = tests[resultIdx].size();
// This is a temporary solution. The reason we need this is because of
// floating point error in the index computations on CPU/GPU, some
// elements of GPU(CUDA/OpenCL) versions are different from the CPU version.
// That is, the input index of CPU/GPU may differ by 1 (rounding error) on
// x or y, hence a different value is copied.
// We expect 99.99% values to be same between the CPU/GPU versions and
// ASSERT_EQ (in comments below) to pass for CUDA & OpenCL backends
size_t fail_count = 0;
for(size_t i = 0; i < nElems; i++) {
if(abs((tests[resultIdx][i] - (T)outData[i])) > 0.001) {
fail_count++;
}
}
ASSERT_EQ(true, ((fail_count / (float)nElems) < 0.02)) << "where count = " << fail_count << std::endl;
//for (size_t elIter = 0; elIter < nElems; ++elIter) {
// ASSERT_EQ(tests[resultIdx][elIter], outData[elIter]) << "at: " << elIter << std::endl;
//}
// Delete
delete[] outData;
if(inArray != 0) af_release_array(inArray);
if(outArray != 0) af_release_array(outArray);
if(tempArray != 0) af_release_array(tempArray);
}
#define ROTATE_INIT(desc, file, resultIdx, angle, crop, recenter) \
TYPED_TEST(RotateLinear, desc) \
{ \
rotateTest<TypeParam>(string(TEST_DIR"/rotate/"#file".test"), resultIdx, angle, crop, recenter); \
}
ROTATE_INIT(Square180NoCropRecenter , rotatelinear1, 0, 180, false, true);
ROTATE_INIT(Square180CropRecenter , rotatelinear1, 1, 180, true , true);
ROTATE_INIT(Square90NoCropRecenter , rotatelinear1, 2, 90 , false, true);
ROTATE_INIT(Square90CropRecenter , rotatelinear1, 3, 90 , true , true);
ROTATE_INIT(Square45NoCropRecenter , rotatelinear1, 4, 45 , false, true);
ROTATE_INIT(Square45CropRecenter , rotatelinear1, 5, 45 , true , true);
ROTATE_INIT(Squarem45NoCropRecenter , rotatelinear1, 6,-45 , false, true);
ROTATE_INIT(Squarem45CropRecenter , rotatelinear1, 7,-45 , true , true);
ROTATE_INIT(Square60NoCropRecenter , rotatelinear1, 8, 60 , false, true);
ROTATE_INIT(Square60CropRecenter , rotatelinear1, 9, 60 , true , true);
ROTATE_INIT(Square30NoCropRecenter , rotatelinear1, 10, 30 , false, true);
ROTATE_INIT(Square30CropRecenter , rotatelinear1, 11, 30 , true , true);
ROTATE_INIT(Square15NoCropRecenter , rotatelinear1, 12, 15 , false, true);
ROTATE_INIT(Square15CropRecenter , rotatelinear1, 13, 15 , true , true);
ROTATE_INIT(Square10NoCropRecenter , rotatelinear1, 14, 10 , false, true);
ROTATE_INIT(Square10CropRecenter , rotatelinear1, 15, 10 , true , true);
ROTATE_INIT(Square01NoCropRecenter , rotatelinear1, 16, 1 , false, true);
ROTATE_INIT(Square01CropRecenter , rotatelinear1, 17, 1 , true , true);
ROTATE_INIT(Square360NoCropRecenter , rotatelinear1, 18, 360, false, true);
ROTATE_INIT(Square360CropRecenter , rotatelinear1, 19, 360, true , true);
ROTATE_INIT(Squarem180NoCropRecenter , rotatelinear1, 20,-180, false, true);
ROTATE_INIT(Squarem180CropRecenter , rotatelinear1, 21,-180, false, true);
ROTATE_INIT(Square00NoCropRecenter , rotatelinear1, 22, 0 , false, true);
ROTATE_INIT(Square00CropRecenter , rotatelinear1, 23, 0 , true , true);
ROTATE_INIT(Rectangle180NoCropRecenter , rotatelinear2, 0, 180, false, true);
ROTATE_INIT(Rectangle180CropRecenter , rotatelinear2, 1, 180, true , true);
ROTATE_INIT(Rectangle90NoCropRecenter , rotatelinear2, 2, 90 , false, true);
ROTATE_INIT(Rectangle90CropRecenter , rotatelinear2, 3, 90 , true , true);
ROTATE_INIT(Rectangle45NoCropRecenter , rotatelinear2, 4, 45 , false, true);
ROTATE_INIT(Rectangle45CropRecenter , rotatelinear2, 5, 45 , true , true);
ROTATE_INIT(Rectanglem45NoCropRecenter , rotatelinear2, 6,-45 , false, true);
ROTATE_INIT(Rectanglem45CropRecenter , rotatelinear2, 7,-45 , true , true);
ROTATE_INIT(Rectangle60NoCropRecenter , rotatelinear2, 8, 60 , false, true);
ROTATE_INIT(Rectangle60CropRecenter , rotatelinear2, 9, 60 , true , true);
ROTATE_INIT(Rectangle30NoCropRecenter , rotatelinear2, 10, 30 , false, true);
ROTATE_INIT(Rectangle30CropRecenter , rotatelinear2, 11, 30 , true , true);
ROTATE_INIT(Rectangle15NoCropRecenter , rotatelinear2, 12, 15 , false, true);
ROTATE_INIT(Rectangle15CropRecenter , rotatelinear2, 13, 15 , true , true);
ROTATE_INIT(Rectangle10NoCropRecenter , rotatelinear2, 14, 10 , false, true);
ROTATE_INIT(Rectangle10CropRecenter , rotatelinear2, 15, 10 , true , true);
ROTATE_INIT(Rectangle01NoCropRecenter , rotatelinear2, 16, 1 , false, true);
ROTATE_INIT(Rectangle01CropRecenter , rotatelinear2, 17, 1 , true , true);
ROTATE_INIT(Rectangle360NoCropRecenter , rotatelinear2, 18, 360, false, true);
ROTATE_INIT(Rectangle360CropRecenter , rotatelinear2, 19, 360, true , true);
ROTATE_INIT(Rectanglem180NoCropRecenter , rotatelinear2, 20,-180, false, true);
ROTATE_INIT(Rectanglem180CropRecenter , rotatelinear2, 21,-180, false, true);
ROTATE_INIT(Rectangle00NoCropRecenter , rotatelinear2, 22, 0 , false, true);
ROTATE_INIT(Rectangle00CropRecenter , rotatelinear2, 23, 0 , true , true);
////////////////////////////////// CPP //////////////////////////////////////
TEST(RotateLinear, CPP)
{
if (noDoubleTests<float>()) return;
const unsigned resultIdx = 0;
const float angle = 180;
const bool crop = false;
vector<af::dim4> numDims;
vector<vector<float> > in;
vector<vector<float> > tests;
readTests<float, float, float>(string(TEST_DIR"/rotate/rotatelinear1.test"),numDims,in,tests);
af::dim4 dims = numDims[0];
float theta = angle * PI / 180.0f;
af::array input(dims, &(in[0].front()));
af::array output = af::rotate(input, theta, crop, AF_INTERP_BILINEAR);
// Get result
float* outData = new float[tests[resultIdx].size()];
output.host((void*)outData);
// Compare result
size_t nElems = tests[resultIdx].size();
// This is a temporary solution. The reason we need this is because of
// floating point error in the index computations on CPU/GPU, some
// elements of GPU(CUDA/OpenCL) versions are different from the CPU version.
// That is, the input index of CPU/GPU may differ by 1 (rounding error) on
// x or y, hence a different value is copied.
// We expect 99.99% values to be same between the CPU/GPU versions and
// ASSERT_EQ (in comments below) to pass for CUDA & OpenCL backends
size_t fail_count = 0;
for(size_t i = 0; i < nElems; i++) {
if(fabs(tests[resultIdx][i] - outData[i]) > 0.0001)
fail_count++;
}
ASSERT_EQ(true, ((fail_count / (float)nElems) < 0.01));
// Delete
delete[] outData;
}
|