1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
package artificialFastqGenerator;
import java.util.Random;
/**
* ArtificialFastqGenerationUtils consists exclusively of static utility methods that are used in
* artificial fastq generation.
*
* Copyright (C) 2012 The Institute of Cancer Research (ICR).
*
* This file is part of ArtificialFastqGenerator v1.0.0.
*
* ArtificialFastqGenerator is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>
*
* Authour's contact email: Matthew.Frampton@icr.ac.uk
*/
public class ArtificialFastqGenerationUtils {
public static Random randNumGenerator = new Random();
/**
* Check if a genotype (represented as a char) is A/C/G/T.
*
* @param genotype - the genotype whose type we are checking.
* @return isACGT - true if the genotype is A/C/G/T, else false.
*/
public static boolean isACGT(char genotype) {
boolean isACGT = false;
if (genotype == 'A' || genotype == 'T' || isGC(genotype)) {
isACGT = true;
}
return isACGT;
}
/**
* Check if a genotype (represented as a char) is G/C.
*
* @param genotype - the genotype whose type we are checking.
* @return isGC - true if the genotype is G/C, else false.
*/
public static boolean isGC(char genotype) {
boolean isGC = false;
if (genotype == 'C' || genotype == 'G') {
isGC = true;
}
return isGC;
}
/**
* Return a char array containing the alternate genotypes.
*
* @param genotype - genotype for which we want the alternatives.
* @return alternateGenotypes - the alternative genotypes.
*/
public static char[] getAlternateGenotypes(char genotype) {
char[] alternateGenotypes = new char[3];
int i = 0;
if (genotype != 'A') {
alternateGenotypes[i] = 'A';
i++;}
if (genotype != 'C') {
alternateGenotypes[i] = 'C';
i++;}
if (genotype != 'G') {
alternateGenotypes[i] = 'G';
i++;}
if (genotype != 'T') {
alternateGenotypes[i] = 'T';
}
return alternateGenotypes;
}
/**
* Generates a pseudo-random number from a normal distribution, but with a minimum and maximum value.
*
* @param mean - the population mean.
* @param standardDeviation - the population standard deviation.
* @param minimum - the minimum possible value.
* @param maximum - the maximum possible value.
* @return randomIntWithinRange - the integer from the bounded normal distribution.
*/
public static int getRandomIntWithinRange(int mean, double standardDeviation, int minimum, int maximum) {
int randomIntWithinRange = (int) Math.round(randNumGenerator.nextGaussian()*standardDeviation+mean);
if (randomIntWithinRange > maximum) {
randomIntWithinRange = maximum;
} else if (randomIntWithinRange < minimum) {
randomIntWithinRange = minimum;
}
return randomIntWithinRange;
//DEBUGGING
//return mean;
}
/**
* This method calculates a region's target coverage from its GC content. It uses a normal distribution to model target
* coverage levels for a given GC content. Hence it first calculates the mean and standard deviation of this
* distribution, and then samples from it. It calculates the mean via a Gaussian function f(x) = ae^-((x-b)^2/2c^2) where
* a is the height of the curve's peak (coverage mean peak), b is the position of the centre of the peak (coverage mean
* peak GC content), and c controls the width of the bell (coverage mean GC content spread). It calculates the standard
* deviation as a multiple of the mean.
*
* @param GCcontent
* @param coverageMeanPeak
* @param coverageMeanPeakGCcontent
* @param coverageMeanGCcontentSpread
* @param coverageSDdividedByMean
* @return targetCoverage
*/
public static int getTargetCoverageViaGaussFuncOfGCcont(double GCcontent, double coverageMeanPeak,
double coverageMeanPeakGCcontent, double coverageMeanGCcontentSpread, double coverageSDdividedByMean) {
double coverageMean = coverageMeanPeak * Math.exp(-1.0*Math.pow(GCcontent-coverageMeanPeakGCcontent,2.0)/(2.0*Math.pow(coverageMeanGCcontentSpread,2.0)));
double coverageSD = coverageMean * coverageSDdividedByMean;
int targetCoverage = (int) Math.round(randNumGenerator.nextGaussian()*coverageSD+coverageMean);
//System.out.println("GCcontent: " + GCcontent + " coverageMean: " + coverageMean + " coverageSD: " + coverageSD + " targetCoverage: " + targetCoverage);
return targetCoverage;
}
/**
* Generates a random double between 0 and 1.
*
* @return randomNumberBtwn0And1 - a pseudo-random double between 0 and 1.
*/
public static double generateRandomDoubleBetween0And1() {
//Generate a random number from 1 to 10000.
int maxInt = 10000;
double randomNumberBtwn0And1 = (double) randNumGenerator.nextInt(maxInt);
randomNumberBtwn0And1 = randomNumberBtwn0And1/((double) maxInt);
return randomNumberBtwn0And1;
}
/**
* Generate a stack trace string for an exception object.
*
* @param e - the exception object.
* @return stackTraceString - the stack trace string for e.
*/
public static String getStackTraceString(Exception e) {
String stackTraceString = e.getClass().getName() + ": " + e.getMessage() + "\n";
StackTraceElement[] stackTraceElements = e.getStackTrace();
for (int i=0; i<stackTraceElements.length; i++) {
stackTraceString = stackTraceString + "\tat " + stackTraceElements[i] + "\n";
}
return stackTraceString;
}
/**
*
* Set the sequence field of Read and BabyRead objects to null and then also set the object to null. This is for helping
* Java to garbage collect redundant Read and BabyRead objects.
*
* @param redundantRead
*/
public static <T extends AbstractRead> void setRedundantReadToNull(T redundantRead) {
redundantRead.setSequence(null);
redundantRead = null;
}
@Deprecated
/**
* Coverage calculated as function of GCContent based on numbers in "Enrichment of sequencing of targets from the human
* genome by solution hybridization" by Tewhey et al: coverage peaks at about 1.3 when GC content is 0.45, and is about
* 0.1 when GC content is 0. Hence we want to calculate mean coverage based on distance from 0.45. Define 2 simultaneous
* equations: 0A + B = 1.3 & 0.45A + B = 0.1, and solve to give A = -8/3 and B = 1.3 . Hence meanCoverage = -8/3 *
* |.45-GCContent| + 1.3, then plug this into nextGaussian to get the coverage for this region. The standard deviation
* is calculated as a multiple of the mean.
*
* @param GcContent - the GC content for this capture probe region.
* @return targetCoverage - the target coverage for nucleobases in the capture probe region.
*/
public static int calculateTargetCoverageFromGCcontent(double GCcontent) {
double coverageMean = -8.0/3.0 * Math.abs(.45-GCcontent) + 1.3;
double coverageSD = coverageMean * Main.coverageSD;
int targetCoverage = (int) Math.round(randNumGenerator.nextGaussian()*coverageSD+coverageMean);
return targetCoverage;
//DEBUGGING
//return Main.targetAverageCoverage;
}
}
|