1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
from pathlib import Path
import numpy as np
import numpy.typing as npt
from typing_extensions import Any
from asammdf import MDF, Signal, SUPPORTED_VERSIONS
import asammdf.blocks.v2_v3_blocks as v3b
import asammdf.blocks.v2_v3_constants as v3c
import asammdf.blocks.v4_blocks as v4b
import asammdf.blocks.v4_constants as v4c
SUPPORTED_VERSIONS = SUPPORTED_VERSIONS[1:] # type: ignore[misc]
cycles = 500
channels_count = 20
array_channels_count = 20
def get_test_data(filename: str = "") -> Path:
"""
Utility functions needed by all test scripts.
"""
return Path(__file__).resolve().parent.joinpath("/data/", filename)
def generate_test_file(tmpdir: str, version: str = "4.10") -> Path | None:
mdf = MDF(version=version)
if version <= "3.30":
filename = Path(tmpdir) / f"big_test_{version}.mdf"
else:
filename = Path(tmpdir) / f"big_test_{version}.mf4"
if filename.exists():
return filename
t = np.arange(cycles, dtype=np.float64)
cls = v4b.ChannelConversion if version >= "4.00" else v3b.ChannelConversion
# no conversion
sigs = []
for i in range(channels_count):
sig = Signal(
np.ones(cycles, dtype=np.uint64) * i,
t,
name=f"Channel_{i}",
unit=f"unit_{i}",
conversion=None,
comment=f"Unsigned int 16bit channel {i}",
raw=True,
)
sigs.append(sig)
mdf.append(sigs, common_timebase=True)
# linear
sigs = []
for i in range(channels_count):
conversion: dict[str, Any] = {
"conversion_type": v4c.CONVERSION_TYPE_LIN if version >= "4.00" else v3c.CONVERSION_TYPE_LINEAR,
"a": float(i),
"b": -0.5,
}
sig = Signal(
np.ones(cycles, dtype=np.int64),
t,
name=f"Channel_{i}",
unit=f"unit_{i}",
conversion=cls(**conversion),
comment=f"Signed 16bit channel {i} with linear conversion",
raw=True,
)
sigs.append(sig)
mdf.append(sigs, common_timebase=True)
# algebraic
sigs = []
for i in range(channels_count):
conversion = {
"conversion_type": v4c.CONVERSION_TYPE_ALG if version >= "4.00" else v3c.CONVERSION_TYPE_FORMULA,
"formula": f"{i} * sin(X)",
}
sig = Signal(
np.arange(cycles, dtype=np.int32) / 100.0,
t,
name=f"Channel_{i}",
unit=f"unit_{i}",
conversion=cls(**conversion),
comment=f"Sinus channel {i} with algebraic conversion",
raw=True,
)
sigs.append(sig)
mdf.append(sigs, common_timebase=True)
# rational
sigs = []
for i in range(channels_count):
conversion = {
"conversion_type": v4c.CONVERSION_TYPE_RAT if version >= "4.00" else v3c.CONVERSION_TYPE_RAT,
"P1": 0,
"P2": i,
"P3": -0.5,
"P4": 0,
"P5": 0,
"P6": 1,
}
sig = Signal(
np.ones(cycles, dtype=np.int64),
t,
name=f"Channel_{i}",
unit=f"unit_{i}",
conversion=cls(**conversion),
comment=f"Channel {i} with rational conversion",
raw=True,
)
sigs.append(sig)
mdf.append(sigs, common_timebase=True)
# string
sigs = []
encoding = "latin-1" if version < "4.00" else "utf-8"
for i in range(channels_count):
strings = [f"Channel {i} sample {j}".encode(encoding) for j in range(cycles)]
sig = Signal(
np.array(strings),
t,
name=f"Channel_{i}",
unit=f"unit_{i}",
comment=f"String channel {i}",
raw=True,
encoding=encoding,
)
sigs.append(sig)
mdf.append(sigs, common_timebase=True)
# byte array
sigs = []
ones = np.ones(cycles, dtype=np.dtype("(8,)u1"))
for i in range(channels_count):
sig = Signal(
ones * i,
t,
name=f"Channel_{i}",
unit=f"unit_{i}",
comment=f"Byte array channel {i}",
raw=True,
)
sigs.append(sig)
mdf.append(sigs, common_timebase=True)
# value to text
sigs = []
ones = np.ones(cycles, dtype=np.uint64)
conversion = {
"raw": np.arange(255, dtype=np.float64),
"phys": np.array([f"Value {i}".encode("ascii") for i in range(255)]),
"conversion_type": v4c.CONVERSION_TYPE_TABX if version >= "4.00" else v3c.CONVERSION_TYPE_TABX,
"links_nr": 260,
"ref_param_nr": 255,
}
for i in range(255):
conversion[f"val_{i}"] = conversion[f"param_val_{i}"] = conversion["raw"][i]
conversion[f"text_{i}"] = conversion["phys"][i]
conversion[f"text_{255}"] = "Default"
for i in range(channels_count):
sig = Signal(
ones * i,
t,
name=f"Channel_{i}",
unit=f"unit_{i}",
comment=f"Value to text channel {i}",
conversion=cls(**conversion),
raw=True,
)
sigs.append(sig)
mdf.append(sigs, common_timebase=True)
name = mdf.save(filename, overwrite=True)
mdf.close()
return None
def generate_arrays_test_file(tmpdir: str) -> Path | None:
version = "4.10"
mdf = MDF(version=version)
filename = Path(tmpdir) / f"arrays_test_{version}.mf4"
if filename.exists():
return filename
t = np.arange(cycles, dtype=np.float64)
# lookup tabel with axis
sigs = []
for i in range(array_channels_count):
samples: list[npt.NDArray[Any]] = [
np.ones((cycles, 2, 3), dtype=np.uint64) * i,
np.ones((cycles, 2), dtype=np.uint64) * i,
np.ones((cycles, 3), dtype=np.uint64) * i,
]
types: list[npt.DTypeLike] = [
(f"Channel_{i}", "(2, 3)<u8"),
(f"channel_{i}_axis_1", "(2, )<u8"),
(f"channel_{i}_axis_2", "(3, )<u8"),
]
sig = Signal(
np.rec.fromarrays(samples, dtype=np.dtype(types)),
t,
name=f"Channel_{i}",
unit=f"unit_{i}",
conversion=None,
comment=f"Array channel {i}",
raw=True,
)
sigs.append(sig)
mdf.append(sigs, common_timebase=True)
# lookup tabel with default axis
sigs = []
for i in range(array_channels_count):
samples = [np.ones((cycles, 2, 3), dtype=np.uint64) * i]
types = [(f"Channel_{i}", "(2, 3)<u8")]
sig = Signal(
np.rec.fromarrays(samples, dtype=np.dtype(types)),
t,
name=f"Channel_{i}",
unit=f"unit_{i}",
conversion=None,
comment=f"Array channel {i} with default axis",
raw=True,
)
sigs.append(sig)
mdf.append(sigs, common_timebase=True)
# structure channel composition
sigs = []
for i in range(array_channels_count):
samples = [
np.ones(cycles, dtype=np.uint8) * i,
np.ones(cycles, dtype=np.uint16) * i,
np.ones(cycles, dtype=np.uint32) * i,
np.ones(cycles, dtype=np.uint64) * i,
np.ones(cycles, dtype=np.int8) * i,
np.ones(cycles, dtype=np.int16) * i,
np.ones(cycles, dtype=np.int32) * i,
np.ones(cycles, dtype=np.int64) * i,
]
types = [
(f"struct_{i}_channel_0", np.uint8),
(f"struct_{i}_channel_1", np.uint16),
(f"struct_{i}_channel_2", np.uint32),
(f"struct_{i}_channel_3", np.uint64),
(f"struct_{i}_channel_4", np.int8),
(f"struct_{i}_channel_5", np.int16),
(f"struct_{i}_channel_6", np.int32),
(f"struct_{i}_channel_7", np.int64),
]
sig = Signal(
np.rec.fromarrays(samples, dtype=np.dtype(types)),
t,
name=f"Channel_{i}",
unit=f"unit_{i}",
conversion=None,
comment=f"Structure channel composition {i}",
raw=True,
)
sigs.append(sig)
mdf.append(sigs, common_timebase=True)
name = mdf.save(filename, overwrite=True)
mdf.close()
return None
if __name__ == "__main__":
# generate_test_file("3.30")
# generate_test_file("4.10")
generate_arrays_test_file(r"D:\TMP")
|