File: TypeManip.h

package info (click to toggle)
asc 2.1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 59,052 kB
  • ctags: 25,676
  • sloc: cpp: 145,189; sh: 8,705; ansic: 5,564; makefile: 551; perl: 150
file content (237 lines) | stat: -rw-r--r-- 8,742 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
////////////////////////////////////////////////////////////////////////////////
// The Loki Library
// Copyright (c) 2001 by Andrei Alexandrescu
// This code accompanies the book:
// Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design 
//     Patterns Applied". Copyright (c) 2001. Addison-Wesley.
// Permission to use, copy, modify, distribute and sell this software for any 
//     purpose is hereby granted without fee, provided that the above copyright 
//     notice appear in all copies and that both that copyright notice and this 
//     permission notice appear in supporting documentation.
// The author or Addison-Welsey Longman make no representations about the 
//     suitability of this software for any purpose. It is provided "as is" 
//     without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////

// Last update: November 22, 2001

#ifndef TYPEMANIP_INC_
#define TYPEMANIP_INC_

namespace Loki
{
////////////////////////////////////////////////////////////////////////////////
// class template Int2Type
// Converts each integral constant into a unique type
// Invocation: Int2Type<v> where v is a compile-time constant integral
// Defines 'value', an enum that evaluates to v
////////////////////////////////////////////////////////////////////////////////

    template <int v>
    struct Int2Type
    {
        enum { value = v };
    };
    
////////////////////////////////////////////////////////////////////////////////
// class template Type2Type
// Converts each type into a unique, insipid type
// Invocation Type2Type<T> where T is a type
// Defines the type OriginalType which maps back to T
////////////////////////////////////////////////////////////////////////////////

    template <typename T>
    struct Type2Type
    {
        typedef T OriginalType;
    };
    
////////////////////////////////////////////////////////////////////////////////
// class template Select
// Selects one of two types based upon a boolean constant
// Invocation: Select<flag, T, U>::Result
// where:
// flag is a compile-time boolean constant
// T and U are types
// Result evaluates to T if flag is true, and to U otherwise.
////////////////////////////////////////////////////////////////////////////////

    template <bool flag, typename T, typename U>
    struct Select
    {
        typedef T Result;
    };
    template <typename T, typename U>
    struct Select<false, T, U>
    {
        typedef U Result;
    };
    
////////////////////////////////////////////////////////////////////////////////
// class template IsSameType
// Return true iff two given types are the same
// Invocation: SameType<T, U>::value
// where:
// T and U are types
// Result evaluates to true iff U == T (types equal)
////////////////////////////////////////////////////////////////////////////////

    template <typename T, typename U>
    struct IsSameType
    {
        enum { value = false };
    };
    
    template <typename T>
    struct IsSameType<T,T>
    {
        enum { value = true };
    };

////////////////////////////////////////////////////////////////////////////////
// Helper types Small and Big - guarantee that sizeof(Small) < sizeof(Big)
////////////////////////////////////////////////////////////////////////////////

    namespace Private
    {
        template <class T, class U>
        struct ConversionHelper
        {
            typedef char Small;
            struct Big { char dummy[2]; };
            static Big   Test(...);
            static Small Test(U);
            static T MakeT();
        };
    }

////////////////////////////////////////////////////////////////////////////////
// class template Conversion
// Figures out the conversion relationships between two types
// Invocations (T and U are types):
// a) Conversion<T, U>::exists
// returns (at compile time) true if there is an implicit conversion from T
// to U (example: Derived to Base)
// b) Conversion<T, U>::exists2Way
// returns (at compile time) true if there are both conversions from T
// to U and from U to T (example: int to char and back)
// c) Conversion<T, U>::sameType
// returns (at compile time) true if T and U represent the same type
//
// Caveat: might not work if T and U are in a private inheritance hierarchy.
////////////////////////////////////////////////////////////////////////////////

    template <class T, class U>
    struct Conversion
    {
        typedef Private::ConversionHelper<T, U> H;
#ifndef __MWERKS__
        enum { exists = sizeof(typename H::Small) == sizeof((H::Test(H::MakeT()))) };
#else
        enum { exists = false };
#endif
        enum { exists2Way = exists && Conversion<U, T>::exists };
        enum { sameType = false };
    };
    
    template <class T>
    struct Conversion<T, T>    
    {
        enum { exists = 1, exists2Way = 1, sameType = 1 };
    };
    
    template <class T>
    struct Conversion<void, T>    
    {
        enum { exists = 0, exists2Way = 0, sameType = 0 };
    };
    
    template <class T>
    struct Conversion<T, void>    
    {
        enum { exists = 0, exists2Way = 0, sameType = 0 };
    };
    
    template <>
    struct Conversion<void, void>    
    {
    public:
        enum { exists = 1, exists2Way = 1, sameType = 1 };
    };

////////////////////////////////////////////////////////////////////////////////
// class template SuperSubclass
// Invocation: SuperSubclass<B, D>::value where B and D are types. 
// Returns true if B is a public base of D, or if B and D are aliases of the 
// same type.
//
// Caveat: might not work if T and U are in a private inheritance hierarchy.
////////////////////////////////////////////////////////////////////////////////

template <class T, class U>
struct SuperSubclass
{
  enum { value = (::Loki::Conversion<const volatile U*, const volatile T*>::exists &&
                  !::Loki::Conversion<const volatile T*, const volatile void*>::sameType) };
};

////////////////////////////////////////////////////////////////////////////////
// class template SuperSubclassStrict
// Invocation: SuperSubclassStrict<B, D>::value where B and D are types. 
// Returns true if B is a public base of D.
//
// Caveat: might not work if T and U are in a private inheritance hierarchy.
////////////////////////////////////////////////////////////////////////////////

template<class T,class U>
struct SuperSubclassStrict
{
  enum { value = (::Loki::Conversion<const volatile U*, const volatile T*>::exists &&
                 !::Loki::Conversion<const volatile T*, const volatile void*>::sameType &&
                 !::Loki::Conversion<const volatile T*, const volatile U*>::sameType) };
};

}   // namespace Loki

////////////////////////////////////////////////////////////////////////////////
// macro SUPERSUBCLASS
// Invocation: SUPERSUBCLASS(B, D) where B and D are types. 
// Returns true if B is a public base of D, or if B and D are aliases of the 
// same type.
//
// Caveat: might not work if T and U are in a private inheritance hierarchy.
// Deprecated: Use SuperSubclass class template instead.
////////////////////////////////////////////////////////////////////////////////

#define SUPERSUBCLASS(T, U) \
    ::Loki::SuperSubclass<T,U>::value

////////////////////////////////////////////////////////////////////////////////
// macro SUPERSUBCLASS_STRICT
// Invocation: SUPERSUBCLASS(B, D) where B and D are types. 
// Returns true if B is a public base of D.
//
// Caveat: might not work if T and U are in a private inheritance hierarchy.
// Deprecated: Use SuperSubclassStrict class template instead.
////////////////////////////////////////////////////////////////////////////////

#define SUPERSUBCLASS_STRICT(T, U) \
    ::Loki::SuperSubclassStrict<T,U>::value

////////////////////////////////////////////////////////////////////////////////
// Change log:
// June 20, 2001: ported by Nick Thurn to gcc 2.95.3. Kudos, Nick!!!
// November 22, 2001: minor change to support porting to boost
// November 22, 2001: fixed bug in Conversion<void, T>
//      (credit due to Brad Town)
// November 23, 2001: (well it's 12:01 am) fixed bug in SUPERSUBCLASS - added
//      the volatile qualifier to be 100% politically correct
// September 16, 2002: Changed "const volatile" to "const volatile *", to enable
//     conversion to succeed. Done earlier by MKH.
//     Added SuperSubclass and SuperSubclassStrict templates. The corresponding
//     macros are deprecated.
//     Added extra parenthesis in sizeof in Conversion, to disambiguate function
//     call from function declaration. T.S.
////////////////////////////////////////////////////////////////////////////////

#endif // TYPEMANIP_INC_