1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
// Copyright 2008 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview Implementation of 32-bit hashing functions.
*
* This is a direct port from the Google Java Hash class
*
*/
goog.provide('goog.crypt.hash32');
goog.require('goog.crypt');
/**
* Default seed used during hashing, digits of pie.
* See SEED32 in http://go/base.hash.java
* @type {number}
*/
goog.crypt.hash32.SEED32 = 314159265;
/**
* Arbitrary constant used during hashing.
* See CONSTANT32 in http://go/base.hash.java
* @type {number}
*/
goog.crypt.hash32.CONSTANT32 = -1640531527;
/**
* Hashes a string to a 32-bit value.
* @param {string} str String to hash.
* @return {number} 32-bit hash.
*/
goog.crypt.hash32.encodeString = function(str) {
return goog.crypt.hash32.encodeByteArray(goog.crypt.stringToByteArray(str));
};
/**
* Hashes a string to a 32-bit value, converting the string to UTF-8 before
* doing the encoding.
* @param {string} str String to hash.
* @return {number} 32-bit hash.
*/
goog.crypt.hash32.encodeStringUtf8 = function(str) {
return goog.crypt.hash32.encodeByteArray(
goog.crypt.stringToUtf8ByteArray(str));
};
/**
* Hashes an integer to a 32-bit value.
* @param {number} value Number to hash.
* @return {number} 32-bit hash.
*/
goog.crypt.hash32.encodeInteger = function(value) {
// TODO(user): Does this make sense in JavaScript with doubles? Should we
// force the value to be in the correct range?
return goog.crypt.hash32.mix32_(
{a: value, b: goog.crypt.hash32.CONSTANT32, c: goog.crypt.hash32.SEED32});
};
/**
* Hashes a "byte" array to a 32-bit value using the supplied seed.
* @param {Array<number>} bytes Array of bytes.
* @param {number=} opt_offset The starting position to use for hash
* computation.
* @param {number=} opt_length Number of bytes that are used for hashing.
* @param {number=} opt_seed The seed.
* @return {number} 32-bit hash.
*/
goog.crypt.hash32.encodeByteArray = function(
bytes, opt_offset, opt_length, opt_seed) {
var offset = opt_offset || 0;
var length = opt_length || bytes.length;
var seed = opt_seed || goog.crypt.hash32.SEED32;
var mix = {
a: goog.crypt.hash32.CONSTANT32,
b: goog.crypt.hash32.CONSTANT32,
c: seed
};
var keylen;
for (keylen = length; keylen >= 12; keylen -= 12, offset += 12) {
mix.a += goog.crypt.hash32.wordAt_(bytes, offset);
mix.b += goog.crypt.hash32.wordAt_(bytes, offset + 4);
mix.c += goog.crypt.hash32.wordAt_(bytes, offset + 8);
goog.crypt.hash32.mix32_(mix);
}
// Hash any remaining bytes
mix.c += length;
switch (keylen) { // deal with rest. Some cases fall through
case 11:
mix.c += (bytes[offset + 10]) << 24;
case 10:
mix.c += (bytes[offset + 9] & 0xff) << 16;
case 9:
mix.c += (bytes[offset + 8] & 0xff) << 8;
// the first byte of c is reserved for the length
case 8:
mix.b += goog.crypt.hash32.wordAt_(bytes, offset + 4);
mix.a += goog.crypt.hash32.wordAt_(bytes, offset);
break;
case 7:
mix.b += (bytes[offset + 6] & 0xff) << 16;
case 6:
mix.b += (bytes[offset + 5] & 0xff) << 8;
case 5:
mix.b += (bytes[offset + 4] & 0xff);
case 4:
mix.a += goog.crypt.hash32.wordAt_(bytes, offset);
break;
case 3:
mix.a += (bytes[offset + 2] & 0xff) << 16;
case 2:
mix.a += (bytes[offset + 1] & 0xff) << 8;
case 1:
mix.a += (bytes[offset + 0] & 0xff);
// case 0 : nothing left to add
}
return goog.crypt.hash32.mix32_(mix);
};
/**
* Performs an inplace mix of an object with the integer properties (a, b, c)
* and returns the final value of c.
* @param {Object} mix Object with properties, a, b, and c.
* @return {number} The end c-value for the mixing.
* @private
*/
goog.crypt.hash32.mix32_ = function(mix) {
var a = mix.a, b = mix.b, c = mix.c;
a -= b;
a -= c;
a ^= c >>> 13;
b -= c;
b -= a;
b ^= a << 8;
c -= a;
c -= b;
c ^= b >>> 13;
a -= b;
a -= c;
a ^= c >>> 12;
b -= c;
b -= a;
b ^= a << 16;
c -= a;
c -= b;
c ^= b >>> 5;
a -= b;
a -= c;
a ^= c >>> 3;
b -= c;
b -= a;
b ^= a << 10;
c -= a;
c -= b;
c ^= b >>> 15;
mix.a = a;
mix.b = b;
mix.c = c;
return c;
};
/**
* Returns the word at a given offset. Treating an array of bytes a word at a
* time is far more efficient than byte-by-byte.
* @param {Array<number>} bytes Array of bytes.
* @param {number} offset Offset in the byte array.
* @return {number} Integer value for the word.
* @private
*/
goog.crypt.hash32.wordAt_ = function(bytes, offset) {
var a = goog.crypt.hash32.toSigned_(bytes[offset + 0]);
var b = goog.crypt.hash32.toSigned_(bytes[offset + 1]);
var c = goog.crypt.hash32.toSigned_(bytes[offset + 2]);
var d = goog.crypt.hash32.toSigned_(bytes[offset + 3]);
return a + (b << 8) + (c << 16) + (d << 24);
};
/**
* Converts an unsigned "byte" to signed, that is, convert a value in the range
* (0, 2^8-1) to (-2^7, 2^7-1) in order to be compatible with Java's byte type.
* @param {number} n Unsigned "byte" value.
* @return {number} Signed "byte" value.
* @private
*/
goog.crypt.hash32.toSigned_ = function(n) {
return n > 127 ? n - 256 : n;
};
|