1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
|
// Copyright 2009 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview Defines an Integer class for representing (potentially)
* infinite length two's-complement integer values.
*
* For the specific case of 64-bit integers, use goog.math.Long, which is more
* efficient.
*
*/
goog.provide('goog.math.Integer');
/**
* Constructs a two's-complement integer an array containing bits of the
* integer in 32-bit (signed) pieces, given in little-endian order (i.e.,
* lowest-order bits in the first piece), and the sign of -1 or 0.
*
* See the from* functions below for other convenient ways of constructing
* Integers.
*
* The internal representation of an integer is an array of 32-bit signed
* pieces, along with a sign (0 or -1) that indicates the contents of all the
* other 32-bit pieces out to infinity. We use 32-bit pieces because these are
* the size of integers on which Javascript performs bit-operations. For
* operations like addition and multiplication, we split each number into 16-bit
* pieces, which can easily be multiplied within Javascript's floating-point
* representation without overflow or change in sign.
*
* @struct
* @constructor
* @param {Array<number>} bits Array containing the bits of the number.
* @param {number} sign The sign of the number: -1 for negative and 0 positive.
* @final
*/
goog.math.Integer = function(bits, sign) {
/**
* @type {!Array<number>}
* @private
*/
this.bits_ = [];
/**
* @type {number}
* @private
*/
this.sign_ = sign;
// Copy the 32-bit signed integer values passed in. We prune out those at the
// top that equal the sign since they are redundant.
var top = true;
for (var i = bits.length - 1; i >= 0; i--) {
var val = bits[i] | 0;
if (!top || val != sign) {
this.bits_[i] = val;
top = false;
}
}
};
// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
// from* methods on which they depend.
/**
* A cache of the Integer representations of small integer values.
* @type {!Object}
* @private
*/
goog.math.Integer.IntCache_ = {};
/**
* Returns an Integer representing the given (32-bit) integer value.
* @param {number} value A 32-bit integer value.
* @return {!goog.math.Integer} The corresponding Integer value.
*/
goog.math.Integer.fromInt = function(value) {
if (-128 <= value && value < 128) {
var cachedObj = goog.math.Integer.IntCache_[value];
if (cachedObj) {
return cachedObj;
}
}
var obj = new goog.math.Integer([value | 0], value < 0 ? -1 : 0);
if (-128 <= value && value < 128) {
goog.math.Integer.IntCache_[value] = obj;
}
return obj;
};
/**
* Returns an Integer representing the given value, provided that it is a finite
* number. Otherwise, zero is returned.
* @param {number} value The value in question.
* @return {!goog.math.Integer} The corresponding Integer value.
*/
goog.math.Integer.fromNumber = function(value) {
if (isNaN(value) || !isFinite(value)) {
return goog.math.Integer.ZERO;
} else if (value < 0) {
return goog.math.Integer.fromNumber(-value).negate();
} else {
var bits = [];
var pow = 1;
for (var i = 0; value >= pow; i++) {
bits[i] = (value / pow) | 0;
pow *= goog.math.Integer.TWO_PWR_32_DBL_;
}
return new goog.math.Integer(bits, 0);
}
};
/**
* Returns a Integer representing the value that comes by concatenating the
* given entries, each is assumed to be 32 signed bits, given in little-endian
* order (lowest order bits in the lowest index), and sign-extending the highest
* order 32-bit value.
* @param {Array<number>} bits The bits of the number, in 32-bit signed pieces,
* in little-endian order.
* @return {!goog.math.Integer} The corresponding Integer value.
*/
goog.math.Integer.fromBits = function(bits) {
var high = bits[bits.length - 1];
return new goog.math.Integer(bits, high & (1 << 31) ? -1 : 0);
};
/**
* Returns an Integer representation of the given string, written using the
* given radix.
* @param {string} str The textual representation of the Integer.
* @param {number=} opt_radix The radix in which the text is written.
* @return {!goog.math.Integer} The corresponding Integer value.
*/
goog.math.Integer.fromString = function(str, opt_radix) {
if (str.length == 0) {
throw new Error('number format error: empty string');
}
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw new Error('radix out of range: ' + radix);
}
if (str.charAt(0) == '-') {
return goog.math.Integer.fromString(str.substring(1), radix).negate();
} else if (str.indexOf('-') >= 0) {
throw new Error('number format error: interior "-" character');
}
// Do several (8) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 8));
var result = goog.math.Integer.ZERO;
for (var i = 0; i < str.length; i += 8) {
var size = Math.min(8, str.length - i);
var value = parseInt(str.substring(i, i + size), radix);
if (size < 8) {
var power = goog.math.Integer.fromNumber(Math.pow(radix, size));
result = result.multiply(power).add(goog.math.Integer.fromNumber(value));
} else {
result = result.multiply(radixToPower);
result = result.add(goog.math.Integer.fromNumber(value));
}
}
return result;
};
/**
* A number used repeatedly in calculations. This must appear before the first
* call to the from* functions below.
* @type {number}
* @private
*/
goog.math.Integer.TWO_PWR_32_DBL_ = (1 << 16) * (1 << 16);
/** @type {!goog.math.Integer} */
goog.math.Integer.ZERO = goog.math.Integer.fromInt(0);
/** @type {!goog.math.Integer} */
goog.math.Integer.ONE = goog.math.Integer.fromInt(1);
/**
* @type {!goog.math.Integer}
* @private
*/
goog.math.Integer.TWO_PWR_24_ = goog.math.Integer.fromInt(1 << 24);
/**
* Returns the value, assuming it is a 32-bit integer.
* @return {number} The corresponding int value.
*/
goog.math.Integer.prototype.toInt = function() {
return this.bits_.length > 0 ? this.bits_[0] : this.sign_;
};
/** @return {number} The closest floating-point representation to this value. */
goog.math.Integer.prototype.toNumber = function() {
if (this.isNegative()) {
return -this.negate().toNumber();
} else {
var val = 0;
var pow = 1;
for (var i = 0; i < this.bits_.length; i++) {
val += this.getBitsUnsigned(i) * pow;
pow *= goog.math.Integer.TWO_PWR_32_DBL_;
}
return val;
}
};
/**
* @param {number=} opt_radix The radix in which the text should be written.
* @return {string} The textual representation of this value.
* @override
*/
goog.math.Integer.prototype.toString = function(opt_radix) {
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw new Error('radix out of range: ' + radix);
}
if (this.isZero()) {
return '0';
} else if (this.isNegative()) {
return '-' + this.negate().toString(radix);
}
// Do several (6) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 6));
var rem = this;
var result = '';
while (true) {
var remDiv = rem.divide(radixToPower);
// The right shifting fixes negative values in the case when
// intval >= 2^31; for more details see
// https://github.com/google/closure-library/pull/498
var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0;
var digits = intval.toString(radix);
rem = remDiv;
if (rem.isZero()) {
return digits + result;
} else {
while (digits.length < 6) {
digits = '0' + digits;
}
result = '' + digits + result;
}
}
};
/**
* Returns the index-th 32-bit (signed) piece of the Integer according to
* little-endian order (i.e., index 0 contains the smallest bits).
* @param {number} index The index in question.
* @return {number} The requested 32-bits as a signed number.
*/
goog.math.Integer.prototype.getBits = function(index) {
if (index < 0) {
return 0; // Allowing this simplifies bit shifting operations below...
} else if (index < this.bits_.length) {
return this.bits_[index];
} else {
return this.sign_;
}
};
/**
* Returns the index-th 32-bit piece as an unsigned number.
* @param {number} index The index in question.
* @return {number} The requested 32-bits as an unsigned number.
*/
goog.math.Integer.prototype.getBitsUnsigned = function(index) {
var val = this.getBits(index);
return val >= 0 ? val : goog.math.Integer.TWO_PWR_32_DBL_ + val;
};
/** @return {number} The sign bit of this number, -1 or 0. */
goog.math.Integer.prototype.getSign = function() {
return this.sign_;
};
/** @return {boolean} Whether this value is zero. */
goog.math.Integer.prototype.isZero = function() {
if (this.sign_ != 0) {
return false;
}
for (var i = 0; i < this.bits_.length; i++) {
if (this.bits_[i] != 0) {
return false;
}
}
return true;
};
/** @return {boolean} Whether this value is negative. */
goog.math.Integer.prototype.isNegative = function() {
return this.sign_ == -1;
};
/** @return {boolean} Whether this value is odd. */
goog.math.Integer.prototype.isOdd = function() {
return (this.bits_.length == 0) && (this.sign_ == -1) ||
(this.bits_.length > 0) && ((this.bits_[0] & 1) != 0);
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer equals the other.
*/
goog.math.Integer.prototype.equals = function(other) {
if (this.sign_ != other.sign_) {
return false;
}
var len = Math.max(this.bits_.length, other.bits_.length);
for (var i = 0; i < len; i++) {
if (this.getBits(i) != other.getBits(i)) {
return false;
}
}
return true;
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer does not equal the other.
*/
goog.math.Integer.prototype.notEquals = function(other) {
return !this.equals(other);
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer is greater than the other.
*/
goog.math.Integer.prototype.greaterThan = function(other) {
return this.compare(other) > 0;
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer is greater than or equal to the other.
*/
goog.math.Integer.prototype.greaterThanOrEqual = function(other) {
return this.compare(other) >= 0;
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer is less than the other.
*/
goog.math.Integer.prototype.lessThan = function(other) {
return this.compare(other) < 0;
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer is less than or equal to the other.
*/
goog.math.Integer.prototype.lessThanOrEqual = function(other) {
return this.compare(other) <= 0;
};
/**
* Compares this Integer with the given one.
* @param {goog.math.Integer} other Integer to compare against.
* @return {number} 0 if they are the same, 1 if the this is greater, and -1
* if the given one is greater.
*/
goog.math.Integer.prototype.compare = function(other) {
var diff = this.subtract(other);
if (diff.isNegative()) {
return -1;
} else if (diff.isZero()) {
return 0;
} else {
return +1;
}
};
/**
* Returns an integer with only the first numBits bits of this value, sign
* extended from the final bit.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Integer} The shorted integer value.
*/
goog.math.Integer.prototype.shorten = function(numBits) {
var arr_index = (numBits - 1) >> 5;
var bit_index = (numBits - 1) % 32;
var bits = [];
for (var i = 0; i < arr_index; i++) {
bits[i] = this.getBits(i);
}
var sigBits = bit_index == 31 ? 0xFFFFFFFF : (1 << (bit_index + 1)) - 1;
var val = this.getBits(arr_index) & sigBits;
if (val & (1 << bit_index)) {
val |= 0xFFFFFFFF - sigBits;
bits[arr_index] = val;
return new goog.math.Integer(bits, -1);
} else {
bits[arr_index] = val;
return new goog.math.Integer(bits, 0);
}
};
/** @return {!goog.math.Integer} The negation of this value. */
goog.math.Integer.prototype.negate = function() {
return this.not().add(goog.math.Integer.ONE);
};
/**
* Returns the sum of this and the given Integer.
* @param {goog.math.Integer} other The Integer to add to this.
* @return {!goog.math.Integer} The Integer result.
*/
goog.math.Integer.prototype.add = function(other) {
var len = Math.max(this.bits_.length, other.bits_.length);
var arr = [];
var carry = 0;
for (var i = 0; i <= len; i++) {
var a1 = this.getBits(i) >>> 16;
var a0 = this.getBits(i) & 0xFFFF;
var b1 = other.getBits(i) >>> 16;
var b0 = other.getBits(i) & 0xFFFF;
var c0 = carry + a0 + b0;
var c1 = (c0 >>> 16) + a1 + b1;
carry = c1 >>> 16;
c0 &= 0xFFFF;
c1 &= 0xFFFF;
arr[i] = (c1 << 16) | c0;
}
return goog.math.Integer.fromBits(arr);
};
/**
* Returns the difference of this and the given Integer.
* @param {goog.math.Integer} other The Integer to subtract from this.
* @return {!goog.math.Integer} The Integer result.
*/
goog.math.Integer.prototype.subtract = function(other) {
return this.add(other.negate());
};
/**
* Returns the product of this and the given Integer.
* @param {goog.math.Integer} other The Integer to multiply against this.
* @return {!goog.math.Integer} The product of this and the other.
*/
goog.math.Integer.prototype.multiply = function(other) {
if (this.isZero()) {
return goog.math.Integer.ZERO;
} else if (other.isZero()) {
return goog.math.Integer.ZERO;
}
if (this.isNegative()) {
if (other.isNegative()) {
return this.negate().multiply(other.negate());
} else {
return this.negate().multiply(other).negate();
}
} else if (other.isNegative()) {
return this.multiply(other.negate()).negate();
}
// If both numbers are small, use float multiplication
if (this.lessThan(goog.math.Integer.TWO_PWR_24_) &&
other.lessThan(goog.math.Integer.TWO_PWR_24_)) {
return goog.math.Integer.fromNumber(this.toNumber() * other.toNumber());
}
// Fill in an array of 16-bit products.
var len = this.bits_.length + other.bits_.length;
var arr = [];
for (var i = 0; i < 2 * len; i++) {
arr[i] = 0;
}
for (var i = 0; i < this.bits_.length; i++) {
for (var j = 0; j < other.bits_.length; j++) {
var a1 = this.getBits(i) >>> 16;
var a0 = this.getBits(i) & 0xFFFF;
var b1 = other.getBits(j) >>> 16;
var b0 = other.getBits(j) & 0xFFFF;
arr[2 * i + 2 * j] += a0 * b0;
goog.math.Integer.carry16_(arr, 2 * i + 2 * j);
arr[2 * i + 2 * j + 1] += a1 * b0;
goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1);
arr[2 * i + 2 * j + 1] += a0 * b1;
goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1);
arr[2 * i + 2 * j + 2] += a1 * b1;
goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 2);
}
}
// Combine the 16-bit values into 32-bit values.
for (var i = 0; i < len; i++) {
arr[i] = (arr[2 * i + 1] << 16) | arr[2 * i];
}
for (var i = len; i < 2 * len; i++) {
arr[i] = 0;
}
return new goog.math.Integer(arr, 0);
};
/**
* Carries any overflow from the given index into later entries.
* @param {Array<number>} bits Array of 16-bit values in little-endian order.
* @param {number} index The index in question.
* @private
*/
goog.math.Integer.carry16_ = function(bits, index) {
while ((bits[index] & 0xFFFF) != bits[index]) {
bits[index + 1] += bits[index] >>> 16;
bits[index] &= 0xFFFF;
index++;
}
};
/**
* Returns "this" Integer divided by the given one. Both "this" and the given
* Integer MUST be positive.
*
* This method is only needed for very large numbers (>10^308),
* for which the original division algorithm gets into an infinite
* loop (see https://github.com/google/closure-library/issues/500).
*
* The algorithm has some possible performance enhancements (or
* could be rewritten entirely), it's just an initial solution for
* the issue linked above.
*
* @param {!goog.math.Integer} other The Integer to divide "this" by.
* @return {!goog.math.Integer} "this" value divided by the given one.
* @private
*/
goog.math.Integer.prototype.slowDivide_ = function(other) {
if (this.isNegative() || other.isNegative()) {
throw new Error('slowDivide_ only works with positive integers.');
}
var twoPower = goog.math.Integer.ONE;
var multiple = other;
// First we have to figure out what the highest bit of the result
// is, so we increase "twoPower" and "multiple" until "multiple"
// exceeds "this".
while (multiple.lessThanOrEqual(this)) {
twoPower = twoPower.shiftLeft(1);
multiple = multiple.shiftLeft(1);
}
// Rewind by one power of two, giving us the highest bit of the
// result.
var res = twoPower.shiftRight(1);
var total = multiple.shiftRight(1);
// Now we starting decreasing "multiple" and "twoPower" to find the
// rest of the bits of the result.
var total2;
multiple = multiple.shiftRight(2);
twoPower = twoPower.shiftRight(2);
while (!multiple.isZero()) {
// whenever we can add "multiple" to the total and not exceed
// "this", that means we've found a 1 bit. Else we've found a 0
// and don't need to add to the result.
total2 = total.add(multiple);
if (total2.lessThanOrEqual(this)) {
res = res.add(twoPower);
total = total2;
}
multiple = multiple.shiftRight(1);
twoPower = twoPower.shiftRight(1);
}
return res;
};
/**
* Returns this Integer divided by the given one.
* @param {!goog.math.Integer} other The Integer to divide this by.
* @return {!goog.math.Integer} This value divided by the given one.
*/
goog.math.Integer.prototype.divide = function(other) {
if (other.isZero()) {
throw new Error('division by zero');
} else if (this.isZero()) {
return goog.math.Integer.ZERO;
}
if (this.isNegative()) {
if (other.isNegative()) {
return this.negate().divide(other.negate());
} else {
return this.negate().divide(other).negate();
}
} else if (other.isNegative()) {
return this.divide(other.negate()).negate();
}
// Have to degrade to slowDivide for Very Large Numbers, because
// they're out of range for the floating-point approximation
// technique used below.
if (this.bits_.length > 30) {
return this.slowDivide_(other);
}
// Repeat the following until the remainder is less than other: find a
// floating-point that approximates remainder / other *from below*, add this
// into the result, and subtract it from the remainder. It is critical that
// the approximate value is less than or equal to the real value so that the
// remainder never becomes negative.
var res = goog.math.Integer.ZERO;
var rem = this;
while (rem.greaterThanOrEqual(other)) {
// Approximate the result of division. This may be a little greater or
// smaller than the actual value.
var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
// We will tweak the approximate result by changing it in the 48-th digit or
// the smallest non-fractional digit, whichever is larger.
var log2 = Math.ceil(Math.log(approx) / Math.LN2);
var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
// Decrease the approximation until it is smaller than the remainder. Note
// that if it is too large, the product overflows and is negative.
var approxRes = goog.math.Integer.fromNumber(approx);
var approxRem = approxRes.multiply(other);
while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
approx -= delta;
approxRes = goog.math.Integer.fromNumber(approx);
approxRem = approxRes.multiply(other);
}
// We know the answer can't be zero... and actually, zero would cause
// infinite recursion since we would make no progress.
if (approxRes.isZero()) {
approxRes = goog.math.Integer.ONE;
}
res = res.add(approxRes);
rem = rem.subtract(approxRem);
}
return res;
};
/**
* Returns this Integer modulo the given one.
* @param {!goog.math.Integer} other The Integer by which to mod.
* @return {!goog.math.Integer} This value modulo the given one.
*/
goog.math.Integer.prototype.modulo = function(other) {
return this.subtract(this.divide(other).multiply(other));
};
/** @return {!goog.math.Integer} The bitwise-NOT of this value. */
goog.math.Integer.prototype.not = function() {
var len = this.bits_.length;
var arr = [];
for (var i = 0; i < len; i++) {
arr[i] = ~this.bits_[i];
}
return new goog.math.Integer(arr, ~this.sign_);
};
/**
* Returns the bitwise-AND of this Integer and the given one.
* @param {goog.math.Integer} other The Integer to AND with this.
* @return {!goog.math.Integer} The bitwise-AND of this and the other.
*/
goog.math.Integer.prototype.and = function(other) {
var len = Math.max(this.bits_.length, other.bits_.length);
var arr = [];
for (var i = 0; i < len; i++) {
arr[i] = this.getBits(i) & other.getBits(i);
}
return new goog.math.Integer(arr, this.sign_ & other.sign_);
};
/**
* Returns the bitwise-OR of this Integer and the given one.
* @param {goog.math.Integer} other The Integer to OR with this.
* @return {!goog.math.Integer} The bitwise-OR of this and the other.
*/
goog.math.Integer.prototype.or = function(other) {
var len = Math.max(this.bits_.length, other.bits_.length);
var arr = [];
for (var i = 0; i < len; i++) {
arr[i] = this.getBits(i) | other.getBits(i);
}
return new goog.math.Integer(arr, this.sign_ | other.sign_);
};
/**
* Returns the bitwise-XOR of this Integer and the given one.
* @param {goog.math.Integer} other The Integer to XOR with this.
* @return {!goog.math.Integer} The bitwise-XOR of this and the other.
*/
goog.math.Integer.prototype.xor = function(other) {
var len = Math.max(this.bits_.length, other.bits_.length);
var arr = [];
for (var i = 0; i < len; i++) {
arr[i] = this.getBits(i) ^ other.getBits(i);
}
return new goog.math.Integer(arr, this.sign_ ^ other.sign_);
};
/**
* Returns this value with bits shifted to the left by the given amount.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Integer} This shifted to the left by the given amount.
*/
goog.math.Integer.prototype.shiftLeft = function(numBits) {
var arr_delta = numBits >> 5;
var bit_delta = numBits % 32;
var len = this.bits_.length + arr_delta + (bit_delta > 0 ? 1 : 0);
var arr = [];
for (var i = 0; i < len; i++) {
if (bit_delta > 0) {
arr[i] = (this.getBits(i - arr_delta) << bit_delta) |
(this.getBits(i - arr_delta - 1) >>> (32 - bit_delta));
} else {
arr[i] = this.getBits(i - arr_delta);
}
}
return new goog.math.Integer(arr, this.sign_);
};
/**
* Returns this value with bits shifted to the right by the given amount.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Integer} This shifted to the right by the given amount.
*/
goog.math.Integer.prototype.shiftRight = function(numBits) {
var arr_delta = numBits >> 5;
var bit_delta = numBits % 32;
var len = this.bits_.length - arr_delta;
var arr = [];
for (var i = 0; i < len; i++) {
if (bit_delta > 0) {
arr[i] = (this.getBits(i + arr_delta) >>> bit_delta) |
(this.getBits(i + arr_delta + 1) << (32 - bit_delta));
} else {
arr[i] = this.getBits(i + arr_delta);
}
}
return new goog.math.Integer(arr, this.sign_);
};
|