File: pchip1.js

package info (click to toggle)
aseba-plugin-blockly 20180211%2Bgit-2
  • links: PTS
  • area: non-free
  • in suites: buster
  • size: 64,472 kB
  • sloc: xml: 7,976; python: 2,314; sh: 261; lisp: 24; makefile: 10
file content (83 lines) | stat: -rw-r--r-- 2,699 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// Copyright 2012 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/**
 * @fileoverview A one dimensional monotone cubic spline interpolator.
 *
 * See http://en.wikipedia.org/wiki/Monotone_cubic_interpolation.
 *
 */

goog.provide('goog.math.interpolator.Pchip1');

goog.require('goog.math');
goog.require('goog.math.interpolator.Spline1');



/**
 * A one dimensional monotone cubic spline interpolator.
 * @extends {goog.math.interpolator.Spline1}
 * @constructor
 * @final
 */
goog.math.interpolator.Pchip1 = function() {
  goog.math.interpolator.Pchip1.base(this, 'constructor');
};
goog.inherits(goog.math.interpolator.Pchip1, goog.math.interpolator.Spline1);


/** @override */
goog.math.interpolator.Pchip1.prototype.computeDerivatives = function(
    dx, slope) {
  var len = dx.length;
  var deriv = new Array(len + 1);
  for (var i = 1; i < len; ++i) {
    if (goog.math.sign(slope[i - 1]) * goog.math.sign(slope[i]) <= 0) {
      deriv[i] = 0;
    } else {
      var w1 = 2 * dx[i] + dx[i - 1];
      var w2 = dx[i] + 2 * dx[i - 1];
      deriv[i] = (w1 + w2) / (w1 / slope[i - 1] + w2 / slope[i]);
    }
  }
  deriv[0] =
      this.computeDerivativeAtBoundary_(dx[0], dx[1], slope[0], slope[1]);
  deriv[len] = this.computeDerivativeAtBoundary_(
      dx[len - 1], dx[len - 2], slope[len - 1], slope[len - 2]);
  return deriv;
};


/**
 * Computes the derivative of a data point at a boundary.
 * @param {number} dx0 The spacing of the 1st data point.
 * @param {number} dx1 The spacing of the 2nd data point.
 * @param {number} slope0 The slope of the 1st data point.
 * @param {number} slope1 The slope of the 2nd data point.
 * @return {number} The derivative at the 1st data point.
 * @private
 */
goog.math.interpolator.Pchip1.prototype.computeDerivativeAtBoundary_ = function(
    dx0, dx1, slope0, slope1) {
  var deriv = ((2 * dx0 + dx1) * slope0 - dx0 * slope1) / (dx0 + dx1);
  if (goog.math.sign(deriv) != goog.math.sign(slope0)) {
    deriv = 0;
  } else if (
      goog.math.sign(slope0) != goog.math.sign(slope1) &&
      Math.abs(deriv) > Math.abs(3 * slope0)) {
    deriv = 3 * slope0;
  }
  return deriv;
};